精英家教网 > 初中数学 > 题目详情

【题目】△ABC中,AB=AC∠BAC=2∠DAE=2α

1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC

2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2

3)如图3,若α=45°,点EBC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.

【答案】(1)见解析;(2)见解析;(3)DE2=BD2+CE2还能成立,理由见解析.

【解析】试题分析:(1)根据轴对称的性质可得∠EAF=∠DAE,AD=AF,再求出∠BAC=∠DAF,然后根据两边对应成比例,夹角相等两三角形相似证明;
(2)根据轴对称的性质可得EF=DE,AF=AD,再求出∠BAD=∠CAF,然后利用“边角边”证明△ABD和△ACF全等,根据全等三角形对应边相等可得CF=BD,全等三角形对应角相等可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理证明即可;
(3)作点D关于AE的对称点F,连接EF、CF,根据轴对称的性质可得EF=DE,AF=AD,再根据同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△ABD和△ACF全等,根据全等三角形对应边相等可得CF=BD,全等三角形对应角相等可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理证明即可.

试题解析:

证明:(1)∵点D关于直线AE的对称点为F,

∴∠EAF=∠DAE,AD=AF,

又∵∠BAC=2∠DAE,

∴∠BAC=∠DAF,

∵AB=AC,

=

∴△ADF∽△ABC;

(2)∵点D关于直线AE的对称点为F,

∴EF=DE,AF=AD,

∵α=45°,

∴∠BAD=90°﹣∠CAD,

∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,

∴∠BAD=∠CAF,

在△ABD和△ACF中,

∴△ABD≌△ACF(SAS),

∴CF=BD,∠ACF=∠B,

∵AB=AC,∠BAC=2α,α=45°,

∴△ABC是等腰直角三角形,

∴∠B=∠ACB=45°,

∴∠ECF=∠ACB+∠ACF=45°+45°=90°,

在Rt△CEF中,由勾股定理得,EF2=CF2+CE2

所以,DE2=BD2+CE2

(3)DE2=BD2+CE2还能成立.

理由如下:作点D关于AE的对称点F,连接EF、CF,

由轴对称的性质得,EF=DE,AF=AD,

∵α=45°,

∴∠BAD=90°﹣∠CAD,

∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,

∴∠BAD=∠CAF,

在△ABD和△ACF中,

∴△ABD≌△ACF(SAS),

∴CF=BD,∠ACF=∠B,

∵AB=AC,∠BAC=2α,α=45°,

∴△ABC是等腰直角三角形,

∴∠B=∠ACB=45°,

∴∠ECF=∠ACB+∠ACF=45°+45°=90°,

在Rt△CEF中,由勾股定理得,EF2=CF2+CE2

所以,DE2=BD2+CE2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】a4·a2,(-a2)3,a12+a2,a2·a3中,计算结果为a6的有(  )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点A(2,0)的两条直线L1、L2分别交y轴于点B、C,其中点B在原点上方,点C在原点下方,已知AB=
(1)求点B的坐标;
(2)若△ABC的面积为4,请求出点C的坐标,并直接写出直线L2所对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学在百度搜索引擎中输入中国梦,我的梦,搜索到与之相关的结果条数为608000,这个数用科学记数法表示为(

A. 60.8×104B. 6.08×105C. 0.608×106D. 6.08×107

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为(

A. 115° B. 120° C. 130° D. 140°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元

(1) 求甲、乙两种商品每件的进价分别是多少元?

(2) 商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,(1)如果∠1=__________,那么DEAC;(同位角相等,两直线平行)

(2)如果∠1=__________,那么EFBC;(内错角相等,两直线平行)

(3)如果DEF+__________=180°,那么DEAC;(同旁内角互补,两直线平行)

(4)如果∠2+__________=180°,那么ABDF;(同旁内角互补,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点A(2,0)的两条直线l1 , l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=
(1)求点B的坐标;
(2)若△ABC的面积为4,求直线l2的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小强在河的一边,要测河面的一只船B与对岸码头A的距离,他的做法如下:

①在岸边确定一点C,使C与A,B在同一直线上;

②在AC的垂直方向画线段CD,取其中点O;

③画DFCD使F、O、A在同一直线上;

④在线段DF上找一点E,使E与O、B共线.

他说测出线段EF的长就是船B与码头A的距离.他这样做有道理吗?为什么?

查看答案和解析>>

同步练习册答案