精英家教网 > 初中数学 > 题目详情

【题目】如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点PEFGH分别是折痕(如图2).设AEx(0<x<2),给出下列判断:①当x=1时,点P是正方形ABCD的中心;②当x时,EF+GHAC;③当0<x<2时,六边形AEFCHG面积的最大值是3;④当0<x<2时,六边形AEFCHG周长的值不变.其中正确的选项是( )

A. ①③ B. ①②④ C. ①③④ D. ①②③④

【答案】C

【解析】(1)正方形纸片ABCD,翻折BD,使两个直角的顶点重合于对角线BD上一点P∴△BEFDGH是等腰直角三角形,AE=1时,重合点PBD的中点,P是正方形ABCD的中心;故结论正确

(2)正方形纸片ABCD,翻折BD,使两个直角的顶点重合于对角线BD上一点P∴△BEF∽△BACx=BE=2﹣= ,即 EF= AC,同理,GH=ACEF+GH=AC,故结论错误

(3)六边形AEFCHG面积=正方形ABCD的面积﹣EBF的面积﹣GDH的面积.AE=x六边形AEFCHG面积=22BEBFGDHD=4﹣×(2﹣x)(2﹣x)﹣xx=﹣x2+2x+2=﹣(x﹣1)2+3,六边形AEFCHG面积的最大值是3,故结论正确

(4)当0x2时,EF+GH=AC,六边形AEFCHG周长=AE+EF+FC+CH+HG+AG=(AE+CH+FC+AG+EF+GH)=2+2+2=4+2故六边形AEFCHG周长的值不变,故结论正确.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】书店举行购书优惠活动:

①一次性购书不超过100元,不享受打折优惠;

②一次性购书超过100元但不超过200元,一律按原价打九折;

③一次性购书超过200元,一律按原价打七折.

小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小刚在课外书中看到这样一道有理数的混合运算题:

计算:

她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,他顺利地解答了这道题。

(1)前后两部分之间存在着什么关系?

(2)先计算哪步分比较简便?并请计算比较简便的那部分。

(3)利用(1)中的关系,直接写出另一部分的结果。

(4)根据以上分析,求出原式的结果。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.

(1)若点P的坐标是(1,4),直接写出k的值和PAB的面积;

(2)设直线PA、PBx轴分别交于点M、N,求证:PMN是等腰三角形;

(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,点GBC边上任意一点,DE⊥AG于点EBF∥DE且交AG于点F

1)求证:AE=BF

2)如图1,连接DFCE,探究线段DFCE的关系并证明;

3)如图2,若AB=GCB中点,连接CF,直接写出四边形CDEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A(a ,2)是直线y=x上一点,以A为圆心,2为半径作⊙A,若P(x,y)是第一象限内⊙A上任意一点,则的最小值为(

A. 1 B. C. —1 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.

1)在图①中,线段AB的长度为 ;若在图中画出以C为直角顶点的Rt△ABC,使点C在格点上,请在图中画出所有点C

2)在图②中,以格点为顶点,请先用无刻度的直尺画正方形ABCD,使它的面积为13;再画一条直线PQ(不与正方形对角线重合),使PQ恰好将正方形ABCD的面积二等分(保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,∠A=90°

1)请用圆规和直尺作出⊙P,使圆心PAC边上,且与ABBC两边都相切(保留作图痕迹,不写作法和证明);

2)在(1)的条件下,若∠B=45°AB=1PBC于点D,求劣弧的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BC=4AO=BOP是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为

查看答案和解析>>

同步练习册答案