精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=ACDBC边上一点,∠A=36°BD平分∠ABCAC于点D.

1)求证:BD=BC

2)写出图中所有的等腰三角形.

【答案】1)见解析;2)△ABC, BDC, ADB.

【解析】

1)由在△ABC中,AB=AC,∠A=36°,可求出∠ABC=C= 72°,根据BD平分∠ABC,可求出∠DBC=36°,由于∠C= 72°,根据三角形内角和可求出∠BDC= 72°,根据等角对等边即可求证;

2)根据等角对等边可判定等腰三角形.

1)在△ABC中,AB=AC,∠A=36°,

所以∠ABC=C= 72°,

因为BD平分∠ABC

所以∠DBC=DBA=36°,

因为∠C= 72°,∠DBC =36°,

所以∠BDC= 72°,

所以BD=BC,

2)等腰三角形有: ABC, BDC, ADB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,甲、乙两车分别从相距480kmA、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:

(1)乙车的速度是   千米/时,乙车行驶的时间t=   小时;

(2)求甲车C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;

(3)直接写出甲车出发多长时间两车相距80千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,AC=BC∠ACB=90°,点DAB的中点,点EAB边上一点.

1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG

2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是边长为6cm的等边三角形,点DB点出发沿B→A方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC上运动,当D到达A点后,D、E运动停止,运动时间为t(秒).

(1)如图1,若a=b=1,点EC出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0t6时:

①求∠AFC的度数;

②求的值;

(2)如图2,若a=1,b=2,点EB点出发沿B→C方向运动,E点到达C点后再沿C→B方向运动.当t3时,连DE,以DE为边作等边△DEM,使M、BDE两侧,求M点所经历的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的部分图象如图,图象过点(﹣10),对称轴为直线,下列结论:①④当时, 的增大而增大.其中正确的结论有(  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是高,EF分别是ABAC的中点.

1AB=6AC=4,求四边形AEDF的周长;

2EFAD有怎样的位置关系?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.

(1)建立如图所示的平面直角坐标系,求抛物线的解析式.

(2)该运动员身高1.8m,在这次跳投中,球在头顶上0.25m处出手,

问:球出手时,他距离地面的高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,∠BAC=106°,EFMN分别是ABAC的垂直平分线,点ENBC上,则∠EAN=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在△ABC中,∠C=90°,AC=BC=7DAB的中点,点EAC上,点FBC上,DE=DF,若BF=4,则EF=_______

查看答案和解析>>

同步练习册答案