精英家教网 > 初中数学 > 题目详情
12.如图,△ABC中,点D、E分别在BC、AC边上,E是AC的中点,BC=3BD,BE与AD相交于F,S△ABD=2,S△BFD=0.5,则四边形FDCE的面积为(  )
A.1.5B.2.5C.3D.6

分析 由△ABD和△ABC共高且BC=3BD、S△ABD=2可得S△ABC=3S△ABD=6,再由CE=$\frac{1}{2}$AC可得S△BCE=$\frac{1}{2}$S△ABC=3,继而可得答案.

解答 解:∵BC=3BD,S△ABD=2,
∴S△ABC=3S△ABD=6,
∵E是AC的中点,即CE=$\frac{1}{2}$AC,
∴S△BCE=$\frac{1}{2}$S△ABC=3,
∴S四边形FDCE=S△BCE-S△BFD=2.5,
故选:B.

点评 本题主要考查三角形的面积,掌握两三角形共高时面积比等于底边的比是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.下列各式中,不属于代数式的是(  )
A.0B.-2x+6x2-xC.m+n=n+mD.$\frac{1}{4}y$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若2a2-a-1=0,则代数式5+2a-4a2的值是3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.一件衣服原来标价为a元,现在打8折销售,现在价格为0.8a元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算
①13+(-56)+47+(-34)
②($\frac{5}{6}$-$\frac{3}{4}$-$\frac{1}{3}$)×(-24)
③(-1)10×2+(-2)3÷4             
 ④-22+|5-8|+24÷(-3)×$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),求S与t的函数关系,并作出函数图象.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.
(1)写出商场销售这种笔记本,每天所得的销售利润y(元)与销售单价x(元)之间的函数关系式(x>12);
(2)若该笔记本的销售单价高于进价且不超过15元,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图1,Rt△ABC中,∠ACB=90°,AC=1,BC=2,将△ABC放置在平面直角坐标系中,使点A与原点重合,点C在x轴正半轴上.将△ABC按如图2方式顺时针滚动(无滑动),则滚动2017次后,点B的坐标为(2019+672$\sqrt{5}$,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)问题情境:如图①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D.
∵∠BAD+∠CAD=90°、∠C+∠CAD=90°,∴∠BAD=∠C.
(2)特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;
(3)归纳证明:如图③,点BC在∠MAN的边AM、AN上,点EF在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;
(4)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为60,则△ACF与△BDE的面积之和是20.(直接写出结果)

查看答案和解析>>

同步练习册答案