精英家教网 > 初中数学 > 题目详情
24、已知:如图,AD⊥BC于D,EF⊥BC于F,EF交AB于G,交CA延长线于E,
且∠1=∠2.
求证:AD平分∠BAC,填写“分析”和“证明”中的空白.
分析:要证明AD平分∠BAC,
只要证明∠
BAD
=∠
CAD

而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,
由已知AD⊥BC、EF⊥BC可推出
AD
EF
,这时可以得到∠1=
∠BAD
,∠2=
∠CAD

从而不难得到结论AD平分∠BAC,.
证明:∵AD⊥BC,EF⊥BC(已知)
AD
EF
同一平面内,垂直于同一条直线的两条直线平行

∠1
=
∠BAD
(两直线平行,内错角相等.)
∠2
=
∠DAC
(两直线平行,同位角相等.)
∠1=∠2
(已知)
∠BAD=∠DAC

即AD平分∠BAC(
角平分线的性质
分析:根据平行线的性质与判定定理,即同一平面内,垂直于同一条直线的两条直线平行,分别得出答案即可.
解答:解:根据平行线的性质与判定定理,故答案为:
BAD,CAD,
AD,EF,
AD,EF,同一平面内,垂直于同一条直线的两条直线平行;
∠1,∠BAD,
∠2,∠DAC,
∠1=∠2,
∠BAD=∠DAC,
角平分线的性质.
点评:此题主要考查了平行线的性质与判定,此题有分析过程,可以很好的培养同学们的分析的思维,得出AD∥EF是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、已知:如图,AD∥BC,ED∥BF,且AF=CE.
求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知,如图,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AD=BC,AC=BD.试判断OD、OC的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,请你说明下列结论成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意填空:
已知,如图,AD∥BC,∠BAD=∠BCD,求证:AB∥CD.
证明:∵AD∥BC(已知)
∴∠1=
∠2(两直线平行,内错角相等),
∠2(两直线平行,内错角相等),

又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性质)
(等式的性质)

即:∠3=∠4
AB∥CD(内错角相等,两直线平行)
AB∥CD(内错角相等,两直线平行)

查看答案和解析>>

同步练习册答案