精英家教网 > 初中数学 > 题目详情
12.下列命题是真命题的是(  )
A.对角线互相平分的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直的四边形是正方形

分析 根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.

解答 解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;
B、对角线相等的平行四边形是矩形,所以B选项为假命题;
C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;
D、对角线互相垂直的矩形是正方形,所以D选项为假命题.
故选A.

点评 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A.B.C.D均在小正方形的顶点上.
(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E小正方形的顶点上,且△ABE的面积为5;
(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,且△CDF的面积为4,CF与(1)中所画线段BE平行,连接AF,请直接写出线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知△ABC,按如下步骤作图:
①以A为圆心,AB长为半径画弧;
②以C为圆心,CB长为半径画弧,两弧相交于点D;
③连接BD,与AC交于点E,连接AD,CD.
(1)求证:△ABC≌△ADC;
(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:(3.14-π)0-$\sqrt{12}$-|-3|+4sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为(  )
A.50°B.80°C.100°D.130°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.对于二次函数y=-x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=-x12+2x1,y2=-x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.
(1)求$\widehat{BC}$的长.
(2)求弦BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若分式$\frac{3}{x-5}$有意义,则x应满足x≠5.

查看答案和解析>>

同步练习册答案