【题目】如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6),②存在,M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).
【解析】
(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;
(2)①先得AB的解析式为:y=-2x+2,根据PD⊥x轴,设P(x,-x2-3x+4),则E(x,-2x+2),根据PE=DE,列方程可得P的坐标;
②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.
解:(1)∵B(1,0),∴OB=1,
∵OC=2OB=2,∴C(﹣2,0),
Rt△ABC中,tan∠ABC=2,
∴, ∴, ∴AC=6,
∴A(﹣2,6),
把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,
解得:,
∴抛物线的解析式为:y=﹣x2﹣3x+4;
(2)①∵A(﹣2,6),B(1,0),
∴AB的解析式为:y=﹣2x+2,
设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),
∵PE=DE,
∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),
∴x=-1或1(舍),
∴P(﹣1,6);
②∵M在直线PD上,且P(﹣1,6),
设M(﹣1,y),
∵B(1,0),A(﹣2,6)
∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,
BM2=(1+1)2+y2=4+y2,
AB2=(1+2)2+62=45,
分三种情况:
i)当∠AMB=90°时,有AM2+BM2=AB2,
∴1+(y﹣6)2+4+y2=45,
解得:y=3,
∴M(﹣1,3+)或(﹣1,3﹣);
ii)当∠ABM=90°时,有AB2+BM2=AM2,
∴45+4+y2=1+(y﹣6)2, ∴y=﹣1,
∴M(﹣1,﹣1),
iii)当∠BAM=90°时,有AM2+AB2=BM2,
∴1+(y﹣6)2+45=4+y2, ∴y=,
∴M(﹣1,);
综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).
科目:初中数学 来源: 题型:
【题目】某建材销售公司在2019年第一季度销售两种品牌的建材共126件,种品牌的建材售价为每件6000元,种品牌的建材售价为每件9000元.
(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售种品牌的建材多少件?
(2)该销售公司决定在2019年第二季度调整价格,将种品牌的建材在上一个季度的基础上下调,种品牌的建材在上一个季度的基础上上涨;同时,与(1)问中最低销售额的销售量相比,种品牌的建材的销售量增加了,种品牌的建材的销售量减少了,结果2019年第二季度的销售额比(1)问中最低销售额增加,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王阿姨家的阳台上放置了一个晾衣架,完全稳固张开如图①.图②,③是晾衣架的侧面展开图,△AOB是边长为130cm的等边三角形,晾衣架OE,OF能以O为圆心转动,且OE=OF=130cm:在OA,OB上的点C,D处分别有支撑杆CN,DM能以C,D为圆心转动.
(1)如图②,若EF平行于地面AB,王阿姨的衣服穿在衣架上的总长度是110cm,垂挂在晾衣杆OE上是否会拖到地面上?说明理由.
(2)如图③,当支撑杆DM支到点M′,此时∠EOB=78°,点E离地面距离最大.保证衣服不拖到地面上,衣服穿在衣架上的总长度最长约为多少厘米?(结果取整)参考数据:()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛,其预赛成绩如图:
(1)根据上图求出下表所缺数据;
平均数 | 中位数 | 众数 | 方差 | |
甲班 | 8.5 | 8.5 | ||
乙班 | 8 | 10 | 1.6 |
(2)根据上表中的平均数、中位数和方差你认为哪班的成绩较好?并说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点O是平行四边形ABCD的对称中心,AD>AB,E、F分别是AB边上的点,且EF=AB;G、H分别是BC边上的点,且GH=BC;若S1,S2分别表示EOF和GOH的面积,则S1,S2之间的等量关系是______________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线y=x2-2mx-3m
(1)当m=1时,
①抛物线的对称轴为直线______,
②抛物线上一点P到x轴的距离为4,求点P的坐标
③当n≤x≤时,函数值y的取值范围是-≤y≤2-n,求n的值
(2)设抛物线y=x2-2mx-3m在2m-1≤x≤2m+1上最低点的纵坐标为y0,直接写出y0与m之间的函数关系式及m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点C(2,1)分别作x轴、y轴的平行线,交直线y=﹣x+4于B、A两点,若二次函数y=ax2+bx+c的图象经过坐标原点O,且顶点在矩形ADBC内(包括边上),则a的取值范围是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于成本的,经试销发现:销售量(件)与销售单价(元)符合一次函数,且当时,;当时,.
(1)求与之间的函数表达式.
(2)在试销期间,若该商场获得利润为元,写出利润与销售单价之间的关系式,并求出利润是元时的销售单价.
(3)在试销期间,销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com