精英家教网 > 初中数学 > 题目详情
7.如图,AB为△ABC外接圆⊙O的直径,点P是线段CA延长线上一点,点E在圆上且满足PE2=PA•PC,连接CE,AE,OE,OE交CA于点D.
(1)求证:△PAE∽△PEC;
(2)求证:PE为⊙O的切线;
(3)若∠B=30°,AP=$\frac{1}{2}$AC,求证:DO=DP.

分析 (1)利用两边对应成比例,夹角相等,两三角形相似即可;
(2)连接BE,转化出∠OEB=∠PCE,又由相似得出∠PEA=∠PCE,从而用直径所对的圆周角是直角,转化出∠OEP=90°即可;
(3)构造全等三角形,先找出OD与PA的关系,再用等积式找出PE与PA的关系,从而判断出OM=PE,得出△ODM≌△PDE即可.

解答 解:(1)∵PE2=PA•PC,
∴$\frac{PE}{PA}=\frac{PC}{PE}$,
∵∠APE=∠EPC,
∴△PAE∽△PEC;
(2)如图1,

连接BE,
∴∠OBE=∠OEB,
∵∠OBE=∠PCE,
∴∠OEB=∠PCE,
∵△PAE∽△PEC,
∴∠PEA=∠PCE,
∴∠PEA=∠OEB,
∵AB为直径,
∴∠AEB=90°,
∴∠OEB+∠OEA=90°,
∵∠PEA+∠OEA=90°,
∴∠OEP=90°,
∵点E在⊙O上,
∴PE是⊙O的切线;
(3)如图,

过点O作OM⊥AC于M,
∴AM=$\frac{1}{2}$AC,
∵BC⊥AC,
∴OM∥BC,
∵∠ABC=30°,
∴∠AOM=30°,
∴OM=$\sqrt{3}$AM=$\frac{\sqrt{3}}{2}$AC,
∵AP=$\frac{1}{2}$AC,
∴OM=$\sqrt{3}$AP,
∵PC=AC+AP=2AP+AP=3AP,
∴PE2=PA×PC=PA×3PA,
∴PE=$\sqrt{3}$PA,
∴OM=PE,
∵∠PED=∠OMD=90°,∠ODM=∠PDE,
∴△ODM≌△PDE,
∴OD=DP.

点评 此题是圆的综合题,主要考查了相似三角形的判定和性质,圆的性质,全等三角形的判定和学生,解本题的关键是构造全等三角形,难点是找OD=PE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.下列计算正确的有(  )个
(1)(y-x)3÷(y-x)-2=(y-x)5     
(2)(-3)2015÷(-3)-2014=-3      
(3)($\frac{1}{3}$)-2×($\frac{3}{2}$)-3=$\frac{8}{3}$        
(4)(a-2b-3-3=a6b9
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)问题背景:
如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+FD;
(2)探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=$\frac{1}{2}$∠BAD,上述结论是仍然成立(填“是”或“否”);
结论应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
能力提高:
如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,平行四边形OABC的顶点O,B在y轴上,顶点A在y=$\frac{{k}_{1}}{x}$(k1<0)上,顶点C在y=$\frac{{k}_{2}}{x}$(k2>0)上,则平行四边形OABC的面积是(  )
A.-2k1B.2k2C.k1+k2D.k2-k1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.
(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.
①求证:FA=DE;
②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;
(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列数2,π,$\frac{22}{7}$,-$\sqrt{2}$,$\sqrt{9}$中,无理数的个数有(  )个.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图所示:数轴上点A所表示的数为a,则a的值是(  )
A.$\sqrt{5}$+1B.-$\sqrt{5}$+1C.$\sqrt{5}$D.$\sqrt{5}$-1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列函数的解析式中是一次函数的是(  )
A.y=$\frac{1}{-x}$B.y=$\frac{1}{5}$x+1C.y=x2+1D.y=$\sqrt{x}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)x-4≥2(x+2);
(2)$\frac{-(x+1)}{2}$<3
(3)$\left\{\begin{array}{l}{2x+3>5}\\{3x-2≤4}\end{array}\right.$
(4)$\left\{\begin{array}{l}{5x-1>3(x+1)}\\{\frac{x-2}{2}≤7-\frac{3x}{2}}\end{array}\right.$.

查看答案和解析>>

同步练习册答案