【题目】操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.
(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;
(2)在(1)的条件下,求∠BEC的度数;
拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.
【答案】(1)见解析;(2)70°;(3)2
【解析】
(1)根据SAS证明△BAD≌△CAE即可.
(2)利用全等三角形的性质解决问题即可.
(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.
(1)证明:如图1中,
∵∠ABC=∠ACB=∠ADE=∠AED,
∴∠EAD=∠CAB,
∴∠EAC=∠DAB,
∵AE=AD,AC=AB,
∴△BAD≌△CAE(SAS).
(2)解:如图1中,设AC交BE于O.
∵∠ABC=∠ACB=55°,
∴∠BAC=180°﹣110°=70°,
∵△BAD≌△CAE,
∴∠ABO=∠ECO,
∵∠EOC=∠AOB,
∴∠CEO=∠BAO=70°,
即∠BEC=70°.
(3)解:如图2中,
∵∠CAB=∠EAD=120°,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS),
∴∠BAD=∠ACE,BD=EC=4,
同理可证∠BEC=∠BAC=120°,
∴∠FEC=60°,
∵CF⊥EF,
∴∠F=90°,
∴∠FCE=30°,
∴EF=EC=2.
科目:初中数学 来源: 题型:
【题目】2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:
(1)由于汽车发生故障,甲组在途中停留了 小时;
(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?
(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题原型:在图①的矩形MNPQ中,点E、F、G、H分别在NP、PQ、QM、MN上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.
操作与探究:在图②,图③的矩形ABCD中,AB=4,BC=8点E、F分别在BC、CD边上,试利用正方形网格分别作出两图中矩形ABCD的反射四边形EFGH,并求出每个反射四边形EFGH的周长.
发现与应用:由前面的操作可以发现一个矩形有不同的反射四边形,且这些反射四边形的周长都相等,若在图①矩形MNPQ中,MN=3,NP=4则其反射四边形EFGH的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2+mx+m2=0.
(1)求证:不论m取何实数,该方程都有两个不相等的实数根;
(2)若该方程的一个根为1,求该方程的另一根。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成份),并规定:顾客每购物满元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得元的购物券.
求转动一次转盘获得购物券的概率;
转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,D是AC边上一点,∠A=36,∠C=72,∠ADB=108。
求证:(1)AD=BD=BC;
(2)点D是线段AC的黄金分割点。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料,再回答问题:有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。
解决下列问题:
(1)菱形的“二分线”可以是____________________________________。
(2)三角形的“二分线”可以是__________________________________。
(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com