【题目】在中,,,点是线段的中点,点在射线上,连接,平移,使点移动到点,得到(点与点对应,点与点对应),交于点.
(1)若点是线段的中点,如图1.
①依题意补全图1;
②求的长;
(2)若点在线段的延长线上,射线与射线交于点,若,求的长.
【答案】(1)①见解析;②;(2)CE=
【解析】
(1)①利用平移的性质画出图形;
②利用相似得出比例,即可求出线段DP的长.
(2)根据条件MQ=DP,利用平行四边形的性质和相似三角形的性质,求出BN的长即可解决.
解:(1)①如图1,补全图形
②连接AD,如图1.
在Rt△ABN中,
∵∠B=90°,AB=4,BN=1,
∴AN=,
∵线段AN平移得到线段DM,
∴DM=AN=,
AD=NM=1,AD∥MC,
∴△ADP∽△CMP.
∴,
∴;
(2)如图,连接NQ,
由平移知:AN∥DM,且AN=DM.
∵MQ=DP,
∴PQ=DM.
∴AN∥PQ,且AN=PQ.
∴四边形ANQP是平行四边形.
∴NQ∥AP.
∴∠BQN=∠BAC=45°.
又∵∠NBQ=∠ABC=90°,
∴BN=BQ.
∵AN∥MQ,
∴,
又∵M是BC的中点,且AB=BC=4,
∴,
∴NB=或(负数舍去).
∴ME=BN=.
∴CE=
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的一边AC为直径的⊙O交AB边于点D,E是⊙O上一点,连接DE,∠E=∠B.
(1)求证:BC是⊙O的切线;
(2)若∠E=45°,AC=4,求⊙O的内接正四边形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解八年级学生双休日的课外阅读情况,学校随机调查了该年级25名学生,得到了一组样本数据,其统计表如下:
八年级25名学生双休日课外阅读时间统计表
阅读时间 | 1小时 | 2小时 | 3小时 | 4小时 | 5小时 | 6小时 |
人数 | 3 | 4 | 6 | 3 | 2 |
(1)请求出阅读时间为4小时的人数所占百分比;
(2)试确定这个样本的众数和平均数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)先化简,再求值:,其中a=2;
(2)如图,在ABCD中,E为BC边上的中点,将△ABE沿AE折叠,点B的对应点为点F,延长AF与CD交于点G,求证:GC=GF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线P:与抛物线Q:在同一平面直角坐标系中(其中a,t均为常数,且t>0),已知点A(1,3)为抛物线P上一点,过点A作直线l∥x轴,与抛物线P交于另一点B.
(1)求a的值及点B的坐标;
(2)当抛物线Q经过点A时
①求抛物线Q的解析式;
②设直线l与抛物线Q的另一交点为C,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
(1)求抛物线的解析式;
(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度得到△AED,点B、C的对应点分别是E、D.
(1)如图1,当点E恰好在AC上时,求∠CDE的度数;
(2)如图2,若=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com