【题目】如图,在一面靠墙(墙的最大可用长度为8 m)的空地上用长为24 m的篱笆围成中间隔有二道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m2.
(1)求S关于x的函数关系式及自变量的取值范围;
(2)求所围成花圃的最大面积.
【答案】(1)S=4x2+24x,自变量的取值范围为:4≤x≤6.(2)32m2.
【解析】
(1)根据AB为xm,BC就为(24-4x)m,利用长方形的面积公式,可求出关系式.
(2)由(1)可知S和x为二次函数关系,根据二次函数的性质即可求围成的长方形花圃的最大面积.
(1)∵花圃的宽AB为x m,
∴花圃的长BC为24-4x m,
∴S=(24-4x)·x=4x2+24x,
∵,
解得:4≤x≤6,
∴S关于x的函数关系式为:S=4x2+24x,自变量的取值范围为:4≤x≤6.
(2)解:由(1)知S=4x2+24x(4≤x≤6),
∴S=4(x-3)x2+36,
由函数性质可知:当x>3时,y随x的增大而减少,
∴当x=4时,Smax=32(m2).
答:所围成花圃的最大面积为32m2.
科目:初中数学 来源: 题型:
【题目】如图所示,已知一次函数的图象与轴,轴分别交于点、.以为边在第一象限内作等腰,且,.过作轴于.的垂直平分线交与点,交轴于点.
(1)求点的坐标;
(2)在直线上有点,且点与点位于直线的同侧,使得,求点的坐标.
(3)在(2)的条件下,连接,判断的形状,并给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小华同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.
(一)猜测探究
在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.
(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是_______,NB与MC的数量关系是_______;
(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由。
(二)拓展应用
如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=90°,∠C1=30°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旅转60°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,∠ACB=90°,AM是BC边的中线,CN⊥AM于N点,连接BN,求证:
(1)△MCN∽△MAC;
(2)∠NBM=∠BAM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,己知A(0,8),B(6,0),点M、N分别是线段AB、AO上的动点,点M从点B出发,以每秒2个单位的速度向点A运动,点N从点A出发,以每秒1个单位的速度向点O运动,点M、N中有一个点停止时,另一个点也停止。设运动时间为t秒。
(1)当t为何值时,M为AB的中点;
(2)当t为何值时,△AMN为直角三角形;
(3)当t为何值时,△AMN是等腰三角形?并求此时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知三角形纸片ABC,其中∠C=90°,AB=10,BC=6,点E,F分别是AC,AB上的点,连接EF.
(1)如图1,若将纸片ABC沿EF折叠,折叠后点A刚好落在AB边上点D处,且S△ADE=S四边形BCED,求ED的长;
(2)如图2,若将纸片ABC沿EF折叠,折叠后点A刚好落在BC边上点M处,且EM∥AB.
①试判断四边形AEMF的形状,并说明理由;
②求折痕EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)
(1)根据题意,填写下表:
时间x(h) 与A地的距离 | 0.5 | 1.8 | _____ |
甲与A地的距离(km) | 5 |
| 20 |
乙与A地的距离(km) | 0 | 12 |
|
(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;
(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com