精英家教网 > 初中数学 > 题目详情
已知方程x2-6x-4n2-32n=0的根都是整数.求整数n的值.
分析:利用求根公式求得x的值,让根的判别式为一个完全平方数,进而整理为两个因式的积为一个常数的形式,判断整数解即可.
解答:解:原方程解得:
x=
36+4(4n2+32n)
2
=
4×4n2+4×32n+4×9
2
=
6±2
4n2+32n+9
2
=3±
4n2+32n+9

因为方程的根是整数,所以4n2+32n+9是完全平方数.
设4n2+32n+9=m2(m≠0且为整数)
(2n+8)2-55=m2
(2n+8+m)(2n+8-m)=55,
因55=1×55=(-1)×(-55)=(-5)×(-11)=5×11,
2n+8+m=55
2n+8-m=1
2n+8+m=11
2n+8-m=5
2n+8+m=-1
2n+8-m=-55
2n+8+m=-5
2n+8-m=-11

解得:n=10、0、-8、-18.
点评:考查二次方程中系数的求法;一元二次方程的根均为整数,那么根的判别式为完全平方数;注意两数的积为一个正数,那么这两个数同为正数或同为负数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•新化县二模)已知方程x2+6x+8=0的两个解分别为x1、x2,则x1+x2+x1•x2的值为
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么q的值是(  )

查看答案和解析>>

科目:初中数学 来源:第1章《一元二次方程》好题集(03):1.2 解一元二次方程的算法(解析版) 题型:选择题

已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )
A.(x-p)2=5
B.(x-p)2=9
C.(x-p+2)2=9
D.(x-p+2)2=5

查看答案和解析>>

同步练习册答案