精英家教网 > 初中数学 > 题目详情
(2008•莆田)如图,抛物线c1:y=x2-2x-3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点P为线段BC上一点,过点P作直线l⊥x轴于点F,交抛物线c1点E.
(1)求A、B、C三点的坐标;
(2)当点P在线段BC上运动时,求线段PE长的最大值;
(3)当PE为最大值时,把抛物线c1向右平移得到抛物线c2,抛物线c2与线段BE交于点M,若直线CM把△BCE的面积分为1:2两部分,则抛物线c1应向右平移几个单位长度可得到抛物线c2

【答案】分析:(1)已知了抛物线的解析式即可求出A、B、C三点的坐标.
(2)由于直线l与y轴平行,那么F、P、E三点的横坐标就应该相等,那么PE的长可看做是直线BC的函数值和抛物线的函数值的差.由此可得出关于PE的长和三点横坐标的函数关系式,根据函数的性质即可得出PE的最大值.
(3)先用平移的单位设出c2的解析式.由于直线CM把△BCE的面积分为1:2两部分,根据等高三角形的面积比等于底边比,可得出ME:BE=1:2或2:1.因此本题要分两种情况进行讨论,可过M作x轴的垂线,先根据相似三角形求出M点的横坐标,然后根据直线BE的解析式,求出M点的坐标.由于抛物线c2经过M点,据此可求出抛物线需要平移的单位.
解答:解:(1)已知抛物线过A、B、C三点,令y=0,
则有:x2-2x-3=0,
解得x=-1,x=3;
因此A点的坐标为(-1,0),B点的坐标为(3,0);
令x=0,y=-3,
因此C点的坐标为(0,-3).

(2)设直线BC的解析式为y=kx-3.
则有:3k-3=0,k=1,
因此直线BC的解析式为y=x-3.
设F点的坐标为(a,0).
PE=EF-PF=|a2-2a-3|-|a-3|=-a2+3a=-(a-2+(0≤a≤3)
因此PE长的最大值为

(3)由(2)可知:F点的坐标为(,0).
因此BF=OB-OF=
设直线BE的解析式为y=kx+b.则有:

解得:
∴直线BE的解析式为y=x-
设平移后的抛物线c2的解析式为y=(x-1-k)2-4(k>0).
过M作MN⊥x轴于N,
①ME:MB=2:1;
∵MN∥EF

∴BN=
∴N点的坐标为(,0),又直线BE过M点.
∴M点坐标为(,-).
由于抛物线c2过M点,
因此-=(-1-k)2-4,
解得k=(负值舍去).
②ME:MB=1:2;

∴BN=1
∴N点的坐标为(2,0),
∴M点的坐标为(2,-).
由于抛物线c2过M点,
则有-=(2-1-k)2-4,
解得k=1+(负值舍去).
因此抛物线c1应向右平移或1+个单位长度后可得到抛物线c2
点评:本题主要考查了一次函数解析式的确定、二次函数图象的平移、图形面积的求法、函数图象交点等知识点,考查了学生分类讨论数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源:2010年湖北省黄冈市数学中考精品试卷之四(解析版) 题型:解答题

(2008•莆田)如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式.
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax2+bx+c的对称轴为x=-

查看答案和解析>>

科目:初中数学 来源:2009年湖北省黄石市阳新县太子中学中考模拟数学试卷(3)(解析版) 题型:解答题

(2008•莆田)如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式.
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax2+bx+c的对称轴为x=-

查看答案和解析>>

科目:初中数学 来源:2009年广东省湛江市中考数学模拟试卷(解析版) 题型:解答题

(2008•莆田)如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式.
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax2+bx+c的对称轴为x=-

查看答案和解析>>

科目:初中数学 来源:2008年福建省莆田市中考数学试卷(网络卷)(解析版) 题型:解答题

(2008•莆田)如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式.
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax2+bx+c的对称轴为x=-

查看答案和解析>>

科目:初中数学 来源:2008年福建省莆田市中考数学试卷(解析版) 题型:解答题

(2008•莆田)如图,抛物线c1:y=x2-2x-3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点P为线段BC上一点,过点P作直线l⊥x轴于点F,交抛物线c1点E.
(1)求A、B、C三点的坐标;
(2)当点P在线段BC上运动时,求线段PE长的最大值;
(3)当PE为最大值时,把抛物线c1向右平移得到抛物线c2,抛物线c2与线段BE交于点M,若直线CM把△BCE的面积分为1:2两部分,则抛物线c1应向右平移几个单位长度可得到抛物线c2

查看答案和解析>>

同步练习册答案