11£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¶þ´Îº¯Êýy=a£¨x+1£©£¨x-3£©£¨a£¼0£©µÄͼÏóÓëxÖá½»ÓÚA£¬BÁ½µã£¨µãAÔÚµãBµÄ×ó²à£©£¬¶¥µãΪM£¬¾­¹ýµãAµÄÖ±Ïßl£ºy=ax+bÓëyÖá½»ÓÚµãC£¬ÓëÅ×ÎïÏßµÄÁíÒ»¸ö½»µãΪD£®
£¨1£©Ö±½Óд³öµãAµÄ×ø±ê£¨-1£¬0£©¡¢µãBµÄ×ø±ê£¨3£¬0£©£»
£¨2£©Èçͼ£¨1£©£¬Èô¶¥µãMµÄ×ø±êΪ£¨1£¬4£©£¬Á¬½ÓBM¡¢AM¡¢BD£¬ÇëÇó³ö¶þ´Îº¯Êý¼°Ò»´Îº¯ÊýµÄ½âÎöʽ£¬²¢Çó³öËıßÐÎADBMµÄÃæ»ý£»
£¨3£©Èçͼ£¨2£©£¬Á¬½ÓDM£¬µ±aΪºÎֵʱ£¬Ö±ÏßDMÓëxÖáµÄ¼Ð½ÇΪ45¡ã£¿
£¨4£©Èçͼ£¨3£©£¬µãEÊÇÖ±ÏßlÉÏ·½µÄÅ×ÎïÏßÉϵÄÒ»µã£¬Èô¡÷ACEµÄÃæ»ýµÄ×î´óֵΪ$\frac{25}{4}$ʱ£¬ÇëÖ±½Óд³ö´ËʱEµãµÄ×ø±ê£®

·ÖÎö £¨1£©Áîy=0½â·½³Ì¼´¿É£®
£¨2£©Óôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÁ½¸öº¯ÊýµÄ½âÎöʽ£¬ÔÙ¸ù¾ÝA¡¢D¡¢B¡¢MµÄ×ø±êÇó³öËıßÐÎADBMµÄÃæ»ý£®
£¨3£©Í¨¹ý½â·½³Ì×éÇó³öµãD×ø±ê£¬¸ù¾ÝÖ±ÏßDMÓëxÖáµÄ¼Ð½ÇΪ45¡ãÁгö·½³Ì¼´¿ÉÇó½â£®
£¨4£©¹ýµãE×÷EF¡ÎyÖᣬ½»Ö±ÏßADÓÚµãF£¬ÉèE£¨x£¬ax2-2ax-3a£©£¬Ð´³ö¡÷ACEÃæ»ýµÄ±í´ïʽ£¬¸ù¾Ý¶þ´Îº¯ÊýµÄ×î´óÖµÁгö·½³Ì¼´¿É½â¾ö£®

½â´ð ½â£º£¨1£©Áîy=0£¬a£¨x+1£©£¨x-3£©=0£¬½âµÃx=-1»ò3£¬ËùÒÔA£¨-1£¬0£©£¬B£¨3£¬0£©£®
¹Ê´ð°¸ÎªA£¨-1£¬0£©£¬B£¨3£¬0£©£®
£¨2£©¡ß¶þ´Îº¯Êýy=a£¨x+1£©£¨x-3£©¶¥µãΪ£¨1£¬4£©£¬
¡à4=-4a£¬
¡àa=-1£¬
¡àÅ×ÎïÏßΪy=-x2+2x+3
¡ßÒ»´Îº¯Êýy=ax+b¾­¹ýA£¨-1£¬0£©
¡à0=-a+b£¬
¡àb=a£¬
¡àÒ»´Îº¯ÊýΪ£ºy=-x-1£¬
ÓÉ$\left\{\begin{array}{l}{y=-x-1}\\{y={-x}^{2}+2x+3}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.»ò\left\{\begin{array}{l}{x=4}\\{y=-5}\end{array}\right.$£¬
¡àµãD£¨4£¬-5£©£¬
¡àSËıßÐÎADBM=S¡÷ABM+S¡÷ABD=$\frac{1}{2}$¡Á4¡Á4+$\frac{1}{2}$¡Á4¡Á5=18£®
£¨3£©ÓÉ$\left\{\begin{array}{l}{y=ax+a}\\{y=a{x}^{2}-2ax-3a}\end{array}\right.$½âµÃµ½$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.»ò\left\{\begin{array}{l}{x=4}\\{y=5a}\end{array}\right.$£¬
¡àµãD£¨4£¬5a£©£¬
¡ß¶¥µãM£¨1£¬-4a£©£¬
¡ßÖ±ÏßDMÓëxÖáµÄ¼Ð½ÇΪ45¡ã£¬
¡à-4a-5a=4-1£¬
¡àa=-$\frac{1}{3}$£®
£¨4£©¹ýµãE×÷EF¡ÎyÖᣬ½»Ö±ÏßADÓÚµãF£¬ÉèE£¨x£¬ax2-2ax-3a£©£¬ÔòF£¨x£¬ax+a£©£¬EF=ax2-2ax-3a-£¨ax+a£©=ax2-3ax-4a£¬
¡ßS¡÷ACE=S¡÷AFE-S¡÷CFE=$\frac{1}{2}$£¨ax2-3ax-4a£©•£¨x+1£©-$\frac{1}{2}$£¨ax2-3ax-4a£©•x=$\frac{1}{2}$£¨ax2-3ax-4a£©=$\frac{1}{2}$a£¨x-$\frac{3}{2}$£©2-$\frac{25}{8}a$£¬
¡àµ±x=$\frac{3}{2}$ʱ£¬¡÷ACEÃæ»ý×î´óÖµ=-$\frac{25}{8}a$=$\frac{25}{4}$£¬
¡àa=-2£¬
¡à´ËʱµãE£¨$\frac{3}{2}$£¬$\frac{15}{2}$£©£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý¡¢Ò»´Îº¯ÊýµÄÓйØÐÔÖÊ¡¢Èý½ÇÐÎÃæ»ý¡¢ËıßÐÎÃæ»ýµÈ֪ʶ£¬Áé»îÔËÓú¯ÊýÓë·½³ÌµÄ¹ØϵÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬±¾Ìâ±È½ÏÄÑ£¬ÐèÒªÓÐÒ»¶¨µÄ´úÊý»¯¼ò¼¼ÇÉ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®£¨1£©-$\frac{2}{3}$-$\frac{1}{6}$-£¨-$\frac{1}{4}$£©-$\frac{1}{2}$
£¨2£©9.872+£¨-$\frac{7}{8}$£©+£¨-5.872£©
£¨3£©£¨$\frac{1}{6}$-$\frac{2}{7}$$+\frac{2}{3}$£©¡Â£¨-$\frac{5}{42}$£©£»
£¨4£©$\frac{1}{105}$$¡Â[\frac{1}{7}-£¨-\frac{1}{3}£©-\frac{1}{5}]$
£¨5£©1.3¡Á£¨-9.12£©+£¨-7£©¡Á9.12
£¨6£©-14-$\frac{1}{6}$¡Á[2-£¨-3£©]2
£¨7£©[$\frac{15}{4}$¡Â£¨-$\frac{1}{4}$£©+0.4¡Á$£¨-\frac{5}{2}£©^{2}$]¡Á£¨-1£©5
£¨8£©[1$\frac{3}{5}¡Á£¨1-\frac{4}{9}£©$]2¡Â[£¨1-$\frac{1}{6}$£©¡Á$£¨-\frac{2}{5}£©$]3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬Ö±ÏßL£ºy=-x+3ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚA¡¢BÁ½µã£¬ÔÚxÖáÉÏÓÐÒ»¶¯µãM´ÓÔ­µãO³ö·¢ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÏò×óÒƶ¯£®
£¨1£©ÇóA¡¢BÁ½µãµÄ×ø±ê£»
£¨2£©Çó¡÷ABMµÄÃæ»ýSÓëMµÄÒƶ¯Ê±¼ätµÄº¯Êý¹Øϵʽ£»
£¨3£©ÔÚMÒƶ¯µÄ¹ý³ÌÖÐÊÇ·ñ´æÔÚij¸öʱ¿ÌÄÜʹ¡÷ABMÊǵÈÑüÈý½ÇÐΣ¿ÈôÄÜ£¬Çó³ötµÄÖµ£¬²¢Çó´ËʱMµãµÄ×ø±ê£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚ¡÷ABCÖУ¬DE¡ÎBC£¬$\frac{AD}{AB}=\frac{1}{2}$£¬ÇÒS¡÷ABC=8cm2£¬ÄÇôS¡÷ADE=2cm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èô·½³Ì2£¨x-1£©=3x+1Óë·½³Ìmx=x-1µÄ½âÏàͬ£¬ÔòmµÄֵΪ$\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¼ÆË㣺
£¨1£©£¨2x+3y£©£¨3x-2y£©£»                 
£¨2£©£¨x+2£©£¨x+3£©-£¨x+6£©£¨x-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁи÷×éÊýÖУ¬Äܹ»¹¹³ÉÖ±½ÇÐÎÈý±ßµÄÊÇ£¨¡¡¡¡£©
A£®1£¬$\sqrt{2}$£¬$\sqrt{3}$B£®3£¬4£¬6C£®$\sqrt{3}$£¬$\sqrt{4}$£¬$\sqrt{6}$D£®$\sqrt{6}$£¬$\sqrt{8}$£¬$\sqrt{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬¶þ´Îº¯Êýy=x2+bx+cµÄͼÏó·Ö±ðÓëxÖá¡¢yÖáÏཻÓÚA¡¢B¡¢CÈýµã£¬Æä¶Ô³ÆÖáÓëxÖá¡¢Ï߶ÎBC·Ö±ð½»ÓÚµãE¡¢µãF£¬Á¬½ÓCE£¬ÒÑÖªµãA£¨-1£¬0£©£¬C£¨0£¬-3£©£®
£¨1£©Çó³ö¸Ã¶þ´Îº¯Êý½âÎöʽ¼°Æ䶥µãDµÄ×ø±ê£»
£¨2£©Çó³öµãBµÄ×ø±ê£»
£¨3£©µ±yËæxÔö´ó¶ø¼õСʱ£¬xµÄÈ¡Öµ·¶Î§ÊÇx£¼1£»
£¨4£©Ö±½Óд³ö¡÷CEFµÄÃæ»ýÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®»­³öÊýÖᣬ°ÑÏÂÁи÷ÊýÔÚÊýÖáÉϱíʾ³öÀ´£¬²¢Óá°£¼¡±ºÅÁ¬½ÓÆðÀ´£º2£¬-1.5£¬0£¬-4£¬$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸