精英家教网 > 初中数学 > 题目详情
8.已知直线y=x-2t与抛物线y=a(x-t)2+k(a>0,t≥0,a,t,k为已知数),在t=2时,直线刚好经过抛物线的顶点.
(1)求k的值.
(2)t由小变大时,两函数值之间大小不断发生改变,特别当t大于正数m时,无论自变量x取何值,y=x-2t的值总小于y=a(x-t)2+k的值,试求a与m的关系式.
(3)当0≤t<m时,设直线与抛物线的两个交点分别为A,B,在a为定值时,线段AB的长度是否存在最大值?若有,请求出相应的t的取值;若没有,请说明理由.

分析 (1)由抛物线的顶点式,可以得知抛物线的对称轴以及顶点坐标,将t=2代入直线,并将抛物线的顶点坐标代入直线中,即可求得k的值;
(2)将y=x-2t代入y=a(x-t)2+k中,得到关于x的一元二次方程,由根的判别式即可得知t的取值范围,从而得出m的值;
(3)联立(2)中的关于x的一元二次方程,当两根之差最大时,线段AB长度最大,从而可得出线段AB的长度最大时t的值.

解答 解:(1)抛物线y=a(x-t)2+k的对称轴为x=t,顶点坐标为(t,k).
∵当t=2时,直线y=x-2t=x-4过点(2,k),
∴k=2-4,即k=-2.
(2)将y=x-2t代入y=a(x-t)2-2中,得:
x-2t=a(x-t)2+k,即ax2-(2at+1)x+at2+2t-2=0,
若要y=x-2t的值总小于y=a(x-t)2-2的值,
则有△=(2at+1)2-4a(at2+2t-2)<0,
即4at>8a+1,
∵a>0,
∴t>2+$\frac{1}{4a}$.
∵当t大于正数m时,无论自变量x取何值,y=x-2t的值总小于y=a(x-t)2+k的值,
∴m=2+$\frac{1}{4a}$.
(3)过点A做x轴的平行线l,过点B作y轴的平行线交l于点C,则有BC⊥AC,如图所示,

∵AB=$\frac{AC}{cos∠BAC}$,∠BAC为定值,
∴当AC最大时,AB也最大.
将y=x-2t代入y=a(x-t)2-2中,得:
ax2-(2at+1)x+at2+2t-2=0,
当0≤t<m时,△>0,即方程ax2-(2at+1)x+at2+2t-2=0有两个不相等的根,
解得x1=$\frac{2at+1-\sqrt{△}}{2a}$,x2=$\frac{2at+1+\sqrt{△}}{2a}$,
AC=x2-x1=$\frac{\sqrt{△}}{a}$.
∵a为定值,
∴当AB最大时,△=8a+1-4at最大,
由△=8a+1-4at在0≤t<m内的单调性可知,当t=0时,△最大.
故当t=0时,线段AB的长度最大.
∵直线AB的解析式为y=x-2t,直线AC∥x轴,
∴tan∠BAC=1,
∴∠BAC=45°.
当a=0时,AC=$\frac{\sqrt{△}}{a}$=$\frac{\sqrt{8a+1}}{a}$,AB=$\frac{AC}{sin∠BAC}$=$\frac{\sqrt{16a+2}}{a}$.
故a为定值时,线段AB的长度存在最大值$\frac{\sqrt{16a+2}}{a}$,此时t的取值为0.

点评 本题考查了二次函数的综合运用,解题的关键是:(1)找到抛物线的顶点坐标,代入直线解析式;(2)将y=x-2t代入y=a(x-t)2+k中,得到关于x的一元二次方程,令根的判别式小于0;(3)将y=x-2t代入y=a(x-t)2+k中,得到关于x的一元二次方程,表示出来两根,找两根之差最大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.如图,矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD于E,若∠OAE=24°,则∠BAE的度数是(  )
A.24°B.33°C.42°D.43°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.一张半径为R的半圆图纸沿它的一条弦折叠,使其弧与直径相切,如图所示,O为半圆圆心,如果切点分直径之比为3:2,则折痕长为$\frac{\sqrt{74}}{5}$R.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,两条直线l1与l2可以把一个平面分成3部分(如图(1)),也可以把一个平面分成4部分,(如图(2)),若平面内有三条直线,可以把平面分成多少部分?(本题只考虑在同一平面内的情况)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中,点O为坐标原点,直线y=-x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=-x+4交于另一点B,且B点的横坐标为1.
(1)求抛物线的解析式.
(2)点C为该抛物线的顶点,D为直线AB上一点,点E为该抛物线上一点,且D、E两点的纵坐标都为1,求△CDE的面积.
(3)如图②,P为直线AB上方的抛物线上一点(点P不与点A、B重合),PM⊥x轴于的M;交线段AB于点F,PN∥AB,交x轴于点N,过点F作FG∥x轴,交PN于点G,设点M的坐标为(m,0),FG的长为d,求d与m之间的函数关系式及FG长度的最大值,并求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,抛物线y=ax2+x+3(a≠0)与x轴的负半轴交于点A(-2,0),顶点为C,点B在抛物线上,且点B的横坐标为10,连接AB、BC、CA,BC与x轴交于点D.

(1)求点D的坐标;
(2)动点P在线段BC上,过点P作x轴的垂线,与抛物线交于点Q,过点Q作QH⊥BC于H,求△PQH的周长的最大值,并直接写出此时点H的坐标;
(3)如图2,以AC为对角线作正方形AMCN,将正方形AMCN在平面内平移得正方形A′M′C′N′,当正方形A′M′C′N′有顶点在△ABC的边AC上(不含端点)时,正方形A′M′C′N′与△ABC重叠部分得到的多边形能否为轴对称图形?如果能,求出此时重叠部分的面积S的值,或重叠部分面积S的取值范围;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是(  )
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,△ABC中,CA=k•CB,∠ACB=α,D为△ABC外一点,且∠ADB=α,BD交AC于E,G为BC上一点,将射线CD绕点C逆时针旋转α度后,射线交BD于点G,过G点作∠CGH=α,GH交CB于H,如图,若k=1,图中是否有与AD相等的线段,若有找出来并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.当x=(  )时,分式$\frac{x-1}{x+1}$的值无意义.
A.0B.1C.-1D.2

查看答案和解析>>

同步练习册答案