精英家教网 > 初中数学 > 题目详情
已知:如图所示,∠ABC=∠ADC,BF和DE分别平分∠ABC和∠ADC,∠AED=∠EDC.求证:ED∥BF.
证明:∵BF和DE分别平分∠ABC和∠ADC(已知)
∴∠EDC=
1
2
1
2
∠ADC,
∠FBA=
1
2
1
2
∠ABC(角平分线定义).
又∵∠ADC=∠ABC(已知),
∴∠
EDC
EDC
=∠FBA(等量代换).
又∵∠AED=∠EDC(已知),
∴∠
FBA
FBA
=∠
AED
AED
(等量代换),
∴ED∥BF
同位角相等,两直线平行
同位角相等,两直线平行
分析:据几何证明题的格式和有关性质定理,填空即可.
解答:证明:∵BF和DE分别平分∠ABC和∠ADC(已知)
∴∠EDC=
1
2
∠ADC,
∠FBA=
1
2
∠ABC(角平分线定义).
又∵∠ADC=∠ABC(已知),
∴∠EDC=∠FBA(等量代换).
又∵∠AED=∠EDC(已知),
∴∠FBA=∠AED(等量代换),
∴ED∥BF(同位角相等,两直线平行).
故答案是:
1
2
1
2
;EDC;FBA;AED;同位角相等,两直线平行.
点评:此题考查了平行线的判定与性质,用到的知识点是平行线的判定与性质、角平分线定义,要掌握几何证明题的格式,会注明理由.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图所示,Rt△ABC的周长为4+2
3
,斜边AB的长为2
3
,则Rt△ABC的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知:如图所示,四边形ABCD是矩形,对角线AC,BD相交于点O,CE∥DB,交AB的延长线于点E,AC与CE相等吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图所示,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD是高,试判断EF与BC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,正比例函数y=ax的图象与反比例函数y=
kx
的图象交于点A(3,2).
(1)试确定上述正比例函数和反比例函数的表达式;
(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,求M点坐标.

查看答案和解析>>

同步练习册答案