分析 (1)根据已知条件得到∠BCD=45°,求得BD=CD,于是得到结论;
(2)根据全等三角形的性质和判定即可得到结论;
(3)根据线段垂直平分线的性质即可得到结论.
解答 解:(1)△DBC是等腰直角三角形,
理由:∵∠ABC=45°,CD⊥AB,
∴∠BCD=45°,
∴BD=CD,
∴△DBC是等腰直角三角形;
(2)∵BE⊥AC,
∴∠BDC=∠BEC=90°,
∵∠BFD=∠CFE,
∴∠DBF=∠ACD,
在△BDF与△ACD中,$\left\{\begin{array}{l}{∠BDC=∠ADC=90°}\\{∠DBF=∠DCA}\\{BD=CD}\end{array}\right.$,
∴△BDF≌△ACD,
∴BF=AC;
(3)∵BE是AC的垂直平分线,
∴CE=$\frac{1}{2}$AC,
∴CE=$\frac{1}{2}$BF.
点评 本题考查了线段垂直平分线的性质,全等三角形的性质,等腰直角三角形的判定,正确的识别图形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
路程 | +5 | -3 | +10 | -8 | -6 | +12 | -10 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{2}$+1 | B. | -$\sqrt{2}$+1 | C. | -$\sqrt{2}$-1 | D. | $\sqrt{2}$-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com