精英家教网 > 初中数学 > 题目详情

(本题12分)
如图,直线轴、轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动. 动直线EF从轴开始以每秒1个长度单位的速度向上平行移动(即EF∥轴),并且分别与轴、线段AB交于E、F点.连结FP,设动点P与动直线EF同时出发,运动时间为t秒.

(1)当t=1秒时,求梯形OPFE的面积;
(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?
(3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.

(1)梯形OPFE的面积为18;(2)当t="5" (在0<t<范围内)时,S最大值=50.
(3)作FD⊥x轴于D,则四边形OEFD为矩形.
∴FD=OE=t,AF=FD=t. 又AP=3t.
当t=t1时,AF1=t1,AP1=3t1;当t=t2时,AF2=t2,AP2=3t2
,又∠A=∠A,∴△AF1P1∽△AF2P2.

解析试题分析:解:设梯形OPFE的面积为S.
(1) 由直线轴、轴分别交于A、B两点
∴A(20,0),B(0,20)
∴OA=OB=20,∠A=∠B=45°..
当t=1时,OE=1,AP=3,∴OP=17,EF=BE=19.
∴S=(OP+EF)·OE=18.
(2) OE=t,AP=3t,∴OP=20-3t,EF=BE=20-t.
∴S=(OP+EF)·OE=(20-3t +20-t)·t =-2t2+20t=-2(t-5)2+50.
∴当t="5" (在0<t<范围内)时,S最大值="50."

D

 
(3) 作FD⊥x轴于D,则四边形OEFD为矩形.

∴FD=OE=t,AF=FD=t. 又AP=3t.
当t=t1时,AF1=t1,AP1=3t1;当t=t2时,AF2=t2,AP2=3t2
,又∠A=∠A,∴△AF1P1∽△AF2P2.
考点:梯形面积公式;动点问题
点评:难题较高。本题考查学生对梯形面积公式的计算,相似三角形判定及动点和动直线作用下图形变化的理解,找出相对应的变量,结合上下题之间能使用的关系式进行计算。要能够在众多条件中准确找出对应所需的信息。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题12分) 如图,在平行四边形ABCD中,AB在x轴上,D点y轴上,,B点坐标为(4,0).点是边上一点,且.点分别从同时出发,以1厘米/秒的速度分别沿向点运动(当点F运动到点B时,点E随之停止运动),EM、CD的延长线交于点P,FPAD于点Q.⊙E半径为,设运动时间为秒。

(1)求直线BC的解析式。

(2)当为何值时,

(3)在(2)问条件下,⊙E与直线PF是否相切;如果相切,加以证明,并求出切点的坐标。如果不相切,说明理由。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

 

(本题12分)如图,点O是等边△ABC内一点,D是△ABC外的一点, ∠AOB= 110°,

∠BOC= ,△BOC ≌△ADC,∠OCD=60°,连接OD。

(1)求证:△OCD是等边三角形;

(2)当=150°时,试判断△AOD 的形状,并说明理由;

(3)探究:当为多少度时,△AOD是等腰三角形。

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题12分)如图,正方形ABCD的边长是2,边BC在x轴上,边AB在y轴上,,将一把三角尺如图放置,其中M为AD的中点,逆时针旋转三角尺.

(1)当三角尺的一边经过C点时,此时三角尺的另一边和AB边交于点,求此时直线PM的解析式;

(2)继续旋转三角尺,三角尺的一边与x轴交于点G, 三角尺的另一边与AB交于,PM的延长线与CD的延长线交于点F,若三角形GF的面积为4,求此时直线PM的解析式;

(3)当旋转到三角尺的一边经过点B,另一直角边的延长线与x轴交于点G,,求此时三角形GOF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题12分)如图,抛物线y=ax2bxcx轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)。点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行。直线y=-xm过点C,交y轴于D点.
⑴求抛物线的函数表达式;
⑵点K为线段AB上一动点,过点Kx轴的垂线与直线CD交于点H,与抛物线交于     点G,求线段HG长度的最大值;
⑶在直线l上取点M,在抛物线上取点N,使以点ACMN为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年人教版九年级第一学期期末考试数学卷 题型:解答题

(本题12分)如图,已知抛物线y=x2+3与x轴交于点A、B,与直线y=x+b相交于点B、C,直线y=x+b与y轴交于点E.
(1)写出直线BC的解析式;
(2)求△ABC的面积;
(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A、B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动。设运动时间为t秒,请写出△MNB的面积s与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?

查看答案和解析>>

同步练习册答案