【题目】在△ABC中,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.
(1)如图1,当点C1在线段CA的延长线时,求∠CC1A1的度数;
(2)已知AB=6,BC=8,
①如图2,连接AA1,CC1,若△CBC1的面积为16,求△ABA1的面积;
②如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应是点P1,直接写出线段EP1长度的最大值.
【答案】(1)∠CC1A1=60°;(2)△ABA1的面积=9;(3)线段EP1长度的最大值为11.
【解析】
(1)由旋转的性质可得:∠A1C1B=∠ACB=30°,BC=BC1,又由等腰三角形的性质,即可求得∠CC1A1的度数;
(2)①由△ABC≌△A1BC1,易证得△ABA1∽△CBC1,然后利用相似三角形的面积比等于相似比的平方,即可求得△ABA1的面积;
②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,即可求得线段EP1长度的最大值
(1)依题意得:△A1C1B≌△ACB,
∴BC1=BC,∠A1C1B=∠C=30°,
∴∠BC1C=∠C=30°,
∴∠CC1A1=60°;
(2)如图2所示:
由(1)知:△A1C1B≌△ACB,
∴A1B=AB,BC1=BC,∠A1BC1=∠ABC,
∴∠1=∠2,==,
∴△A1BA∽△C1BC,
∴=()2,
∵△CBC1的面积为16,
∴△ABA1的面积=9.
(3)线段EP1长度的最大值为11,理由如下:
如图3所示:当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,
最大值为:EP1=BC+BE=8+3=11.
即线段EP1长度的最大值为11.
科目:初中数学 来源: 题型:
【题目】如图,已知点B、E、C、F在同一条直线上,∠A= ∠D,要使△ABC∽△DEF,还需添加一个条件,则添加的条件可以是_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.1米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,A点的横坐标为3,则下列结论:①k=6;②A点与B点关于原点O中心对称;③关于x的不等式<0的解集为x<﹣3或0<x<3;④若双曲线y=(k>0)上有一点C的纵坐标为6,则△AOC的面积为8,其中正确结论的个数( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)
(1)转动转盘一次,求转出的数字是-2的概率;
(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知等边,顶点在双曲线上,点的坐标为.过作交双曲线于点,过作交x轴于点得到第二个等边;过作交双曲线于点,过作交x轴于点,得到第三个等边;以此类推,…,则点的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H.
(1)求证:;
(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;
(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com