分析 (1)设销售单价为x元,可列方程为(x-20)[250-10(x-25)]=2000,解方程即可解决问题.
(2)构建二次函数,利用二次函数的性质即可解决问题.
解答 解:(1)设销售单价为x元,可列方程为(x-20)[250-10(x-25)]=2000,
解得x1=30,x2=40
(2)w=-10x2+700x-10000=-10(x-35)2+2250.
∵-10<0,∴函数图象开口向下,w有最大值,
当x=35时,wmax=2250,故当单价为35元时,该文具每天的最大利润为2250元.
点评 本题考查了二次函数的应用、一元二次方程的应用等知识,最大销售利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=$\frac{b}{2a}$时取得.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com