精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,过F作FH⊥BC于H,交BE于G,连接CG.
(1)求证:四边形CEFG是菱形;
(2)若AB=8,BC=10,求四边形CEFG的面积.
分析:(1)根据翻折的性质可得∠1=∠2,EC=EF,再根据同角的余角相等求出∠1=∠3,从而得到∠2=∠3,根据同位角相等,两直线平行可得EF∥CG,再根据垂直于同一直线的两直线平行求出FG∥CD,从而求出四边形CEFG是平行四边形,然后根据邻边相等的平行四边形是菱形证明;
(2)根据翻折的性质可得BF=BC=10,然后利用勾股定理列式求出AF,从而得到DF的长,设CE=EF=x,表示出DE,在Rt△DEF中,利用勾股定理列出方程求出x的值,再根据菱形的面积公式列式计算即可得解.
解答:(1)证明:根据翻折,∠1=∠2,EC=EF,
∵FH⊥BC,
∴∠3+∠4=90°,
又∵∠1+∠4=∠BCD=90°,
∴∠1=∠3,
∴∠2=∠3,
∴EF∥CG,
又∵FH⊥BC,∠BCD=90°,
∴FG∥CD,
∴四边形CEFG是平行四边形,
∵EC=EF(已证),
∴四边形CEFG是菱形;

(2)解:根据翻折,BF=BC=10,
在Rt△ABF中,AF=
BF2-AB2
=
102-82
=6,
∴DF=AD-AF=10-6=4,
设CE=EF=x,则DE=CD-CE=8-x,
在Rt△DEF中,DF2+DE2=EF2
即42+(8-x)2=x2
解得x=5,
所以,四边形CEFG的面积=CE•DF=5×4=20.
点评:本题考查了矩形的性质,菱形的判定与性质,翻折变换的性质,(1)求出四边形CEFG是邻边相等的平行四边形是证明菱形的关键,(2)根据勾股定理求出菱形的边长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案