精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的半径为2,弦AB的长为2,点C是优弧AB上的一动点,BDBC交直线AC于点D,当点C从△ABC面积最大时运动到BC最长时,点D所经过的路径长为_____

【答案】π

【解析】

如图,以AB为边向上作等边三角形△ABF,连接OAOBOFDFOFABH.说明点D的运动轨迹是以F为圆心,FA为半径的圆,再利用弧长公式求解即可.

如图,以AB为边向上作等边三角形△ABF,连接OAOBOFDFOFABH

FA=FBOA=OB

OFABAH=BH=

sinBOH=

∴∠BOH=∠AOH=60°

∴∠AOB=120°

∴∠C=AOB=60°

DBBC

∴∠DBC=90°

∴∠CDB=30°

∵∠AFB=60°

∴∠ADB=AFB

∴点D的运动轨迹是以F为圆心,FA为半径的圆,

∵当点C从△ABC面积最大时运动到BC最长时,BC绕点B顺时针旋转了30°

BD绕点B也旋转了30°

∴点D的轨迹所对的圆心角为60°

∴运动路径的长

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠C=90°,AC=BC=,将ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接CB,则CB的长为(  )

A. B. C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=4AC相交于点ONAO的中点,点MBC边上,POD的中点,过点PPMBC于点M,交于点N′,则PN-MN′的值为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知上一点,.

(Ⅰ)如图①,过点的切线,与的延长线交于点,求的大小及的长;

(Ⅱ)如图②,上一点,延长线与交于点,若,求的大小及的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线ymx2+nx3m≠0)与x轴交于A(30)B(10)两点,与y轴交于点C,直线y=﹣x与该抛物线交于EF两点.

1)求点C坐标及抛物线的解析式.

2P是直线EF下方抛物线上的一个动点,作PHEF于点H,求PH的最大值.

3)以点C为圆心,1为半径作圆,⊙C上是否存在点D,使得△BCD是以CD为直角边的直角三角形?若存在,直接写出D点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC120°ABCE2,连接BEPBE的中点,连接PDAD

1)为了研究线段ADPD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CECA重合,如图2,请直接写出ADPD的数量关系;

2)如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;

3)如图3,若∠ACD45°,求△ACD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙OBD是⊙O的直径,AECDCD的延长线于点EDA平分∠BDE

⑴求证:AE是⊙O的切线;

⑵若AE4cmCD6cm,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习圆的对称性时知道结论:垂直于弦的直径一定平分这条弦,请尝试解决问题:如图,在RtACB中,∠ACB90°,圆OACB的外接圆.点D是圆O上一点,过点DDEBC,垂足为E,且BD平分∠ABE

1)判断直线ED与圆O的位置关系,并说明理由.

2)若AC12BC5,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10,得分均为整数).

根据以上信息回答下列问题:

(1)训练后学生成绩统计表中,并补充完成下表:

(2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?

(3)经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.

查看答案和解析>>

同步练习册答案