精英家教网 > 初中数学 > 题目详情
如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整,若调整木条的夹角时不破坏此木框,则任两螺丝的距离的最大值是  (      )
A.5B.7 C.8 D.10
B

试题分析:若两个螺丝的距离最大,则此时这个木框的形状为三角形,可根据三条木棍的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.
已知4条木棍的四边长为2、3、4、6;
①选2+3、4、6作为三角形,则三边长为5、4、6;6-5<4<6+5,能构成三角形,此时两个螺丝间的最长距离为6;
②选3+4、6、2作为三角形,则三边长为2、7、6;6-2<7<6+2,能构成三角形,此时两个螺丝间的最大距离为7;
③选4+6、2、3作为三角形,则三边长为10、2、3;2+3<10,不能构成三角形,此种情况不成立;
综上所述,任两螺丝的距离之最大值为7.
故选B.
点评:此题实际考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

下面几条线段能构成三角形的是  (   ).
A.3,1,5B.5,12,14  C.7,2,4  D.1,2,3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

【问题提出】
规定:四条边对应相等,四个角对应相等的两个四边形全等.
我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.
【初步思考】
在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件,满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.
【深入探究】
小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:
Ⅰ一条边和四个角对应相等;
Ⅱ二条边和三个角对应相等;
Ⅲ三条边和二个角对应相等;
Ⅳ四条边和一个角对应相等.
(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.
(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.
已知:如图,          
求证:                     
证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形和四边形为例,分为以下四类:




其中能判定四边形和四边形全等的是     (填序号),概括可得“全等四边形的判定方法”,这个判定方法是         
(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,由下列条件不能判定△ABC与△ADE相似的是(    )
A.B.∠B=∠ADEC.D.∠C=∠AED

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间t(s),解答下列各问题:

(1)求的面积;
(2)当t为何值是,△PBQ是直角三角形?
(3)设四边形APQC的面积为y(),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是面积的三分之二?如果存在,求出t的值;不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

等腰三角形一底角为50°,则顶角的度数是
A.65°B.70°C.80°D.40°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一、阅读理解:
在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C为直角,则
(2)若∠C为为锐角,则的关系为:
(3)若∠C为钝角,试推导的关系.
二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是钝角三角形,求第三边c的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,BC=1,数轴上点A所表示的数为a,则a值为(   )
A.+1B.-+1C.-1D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一个多边形的每一个内角都是,则这个多边形的边数为      .

查看答案和解析>>

同步练习册答案