精英家教网 > 初中数学 > 题目详情
(2013•历城区二模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若AB=6厘米,∠EFH=30°,则边AD的长是
4
3
cm
4
3
cm
分析:利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,进而得出EH,EF的长,再利用由折叠可得HF的长即为边AD的长.
解答:解:∵∠HEM=∠AEH,∠BEF=∠FEM,
∴∠HEF=∠HEM+∠FEM=
1
2
×180°=90°,
同理可得:∠EHG=∠HGF=∠EFG=90°,
∴四边形EFGH为矩形,
∵AB=6厘米,∠EFH=30°,
∴∠BFE=30°,∠AEH=30°,
设BE=x,则EF=2x,
∴HE=2x•tan30°=
2
3
3
x,
∴AH=
3
3
x,
∵AE=6-x,
则(6-x)2+(
3
3
x)2=(
2
3
3
x)2
解得:x=3,
∴EF=6cm,HE=2
3
cm,
∵AD=AH+HD=HM+MF=HF,HF=2×2
3
=4
3
(cm),
∴AD=4
3
厘米.
故答案为:4
3
cm.
点评:此题主要考查学生对翻转、折叠矩形、三角形等知识的掌握情况.错误的主要原因是空间观念以及转化的能力不强,缺乏简单的逻辑推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•历城区二模)点E为正方形ABCD的BC边的中点,动点F在对角线AC上运动,连接BF、EF.设AF=x,△BEF的周长为y,那么能表示y与x的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区二模)如图,在一单位为1的方格纸上,△AA1A2,△A2A3A4,△A4A5A6,△A6A7A8,…,都是一边在x轴上、边长分别为1,2,3,4,…的等边三角形.若△AA1A2的顶点坐标分别为A(0,0),A1
1
2
3
2
),A2(1,0),则依如图所示规律,A2013的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区二模)已知a2+a-1=0,则2a3+4a2+2013的值是
2015
2015

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区二模)如图,M为双曲线y=
2x
上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于D、C两点,若直线y=-x+m与y轴交于点A,与x轴交于点B,则AD•BC的值为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区二模)直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线y=
mx
(x<0)交于点A(-1,n).
(1)求直线与双曲线的解析式.
(2)连接OA,求∠OAB的正弦值.
(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案