分析 (1)如答图1,过点A作AM⊥DF 交BC于点M.通过证明△BAM≌△ADF得到其对应边相等:AM=DF,则又由平行四边形的性质推知AM=GP,则GP=DF;
(2)如答图2,过点P作FN⊥AD与点N.根据菱形的性质、等腰三角形的“三线合一”的性质推知DG=2DN,然后结合矩形DNPC的性质得到:DG=2PC.
解答 解:(1)GP=DF.理由如下:
如答图1,过点A作AM⊥DF 交BC于点M.
∵四边形ABCD是正方形,
∴AD=AB,∠B═90°,
∴∠BAM=∠ADF,
在△BAM与△ADF中,
$\left\{\begin{array}{l}{∠B=∠DAF=90°}\\{AB=DA}\\{∠BAM=∠ADF}\end{array}\right.$,
∴△BAM≌△ADF(ASA),
∴AM=DF
又∵四边形AMPG为平行四边形,
∴AM=GP,即GP=DF;
(2)DG=2PC.理由如下:
如答图2,过点P作FN⊥AD交AD于点N.
若四边形DFEP为菱形,则DP=DF,
∵DP=DF,
∴DP=GP,即DG=2DN.
∵四边形DNPC为矩形,
∴PC=DN,
∴DG=2PC.
点评 本题考查了四边形综合题,解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,有助于提高解题速度和准确率.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com