精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中,F是边BC上一点(点F与点B、点C均不重合),AE⊥AF,AE交CD的延长精英家教网线于点E,连接EF交AD于点G.
(1)求证:BF•FC=DG•EC;
(2)设正方形ABCD的边长为1,是否存在这样的点F,使得AF=FG.若存在,求出这时BF的长;若不存在,请说明理由.
分析:(1)由正方形的性质,可得AB=AD,再根据已知和同角的余角相等得出可得出∠BAF=∠EAD,从而证明出△BAF≌△EAD,则BF=DE.再根据AD∥BC,推出
DG
FC
=
BF
EC
,化为乘积式即可;
(2)设BF=x,则FC=1-x,EC=1+x,由AF=FG,则∠FAG=∠FGA,再根据AD∥BC,推出△ABF∽△ECF.则
BF
AB
=
FC
EC
,即
x
1
=
1-x
1+x
.从而可求出x,舍去负根,从而求出BF的长.
解答:解:(1)证明:∵正方形ABCD,
∴AB=AD,∠ABC=∠ADE=90°,∠BAD=90°(1分)
又∵AE⊥AF,∴∠EAF=90°
∴∠BAD=∠EAF,即∠BAF+∠FAD=∠EAD+∠DAF
∴∠BAF=∠EAD(1分)
∴△BAF≌△EAD,∴BF=DE.(1分)
∵AD∥BC,
DG
FC
=
ED
EC
.∴
DG
FC
=
BF
EC
.(2分)
∴BF•FC=DG•EC.(1分)

(2)设BF=x,则FC=1-x,EC=1+x,
若AF=FG,则∠FAG=∠FGA
∵AD∥BC,∴∠BFA=∠FAG,∠CFE=∠FGA
∴∠BFA=∠CFE,(1分)
又∠ABF=∠ECF=90°
∴△ABF∽△ECF.(1分)
BF
AB
=
FC
EC
,即:
x
1
=
1-x
1+x
.(2分)
∴x2+2x-1=0.(1分)
解得:x=
2
-1
.(负根舍去)(1分)
(注:求解的方法很多,参照上述步骤给分.)
点评:本题考查了相似三角形的判定和性质、全等三角形的判定和性质以及正方形的性质、平行线分线段成比例定理.是中考压轴题,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案