精英家教网 > 初中数学 > 题目详情
如图,点D在反比例函数y=
k
x
(k>0)上,点C在x轴的正半轴上且坐标为(4,0),△ODC是以CO为斜边的等腰直角三角形.
(1)求反比例函数的解析式;

(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求OF的长;

(3)直线y=-x+3交x轴于M点,交y轴于N点,点P是双曲线y=
k
x
(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴于R点,PQ,PR与直线MN交于H,G两点.给出下列两个结论:①△PGH的面积不变;②MG•NH的值不变,其中有且只有一个结论是正确的,请你选择并证明求值.
(1)由题可知:D(2,2),
因为点D在反比例函数y=
k
x
(k>0)上,
所以k=4,
∴y=
4
x


(2)B点的坐标为(1,4),可知△EBF≌△A'OF,
设OF=x,则EF=A'F=4-x,
在直角三角形A′OF中,A′F2+A′O2=OF2
∴(4-x)2+1=x2
解得:x=
17
8


(3)MG•NH的值不变,且值为8.
由y=-x+3得:OM=ON
∴∠OMN=∠ONM=45°
∴MG=
2
PQ,NH=
2
PR
∴MG•NH=2PQ•PR=8.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

若反比例函数的图象经过点P(-1,4),则它的函数关系式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-x-1与反比例函数y=
m
x
交于第二象限点A.一次函数y=-x-1与坐标轴分别交于B、C两点,连接AO,若tan∠AOB=
1
3

(1)求反比例函数的解析式;
(2)求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,一次函数的图象经过第一、二、三象限,且与反比例函数的图象交于A、B两点,与y轴交于点C,与x轴交于点D.OB=
10
,tan∠DOB=
1
3

(1)求反比例函数的解析式;
(2)设点A的横坐标为m,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

反比例函数y=
m
x
(m≠0)与一次函数y=kx+b(k≠0)的图象,如图所示,请写出一条正确的结论:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知y=
6
x
,当y≤-2时,x的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

y=(m2-5)xm2-m-7是y关于x的反比例函数,且图象在第二、四象限,则m的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

直线ι与双曲线C在第一象限相交于A,B两点,其图象信息如图所示,则阴影部分(包括边界)横,纵坐标都是整数的点(俗称格点)有(  )
A.4个B.5个C.6个D.8个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知A、B是反比例函数y=
k
x
(k>0,x>0)图象上的两点,BCx轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案