精英家教网 > 初中数学 > 题目详情
(2013•内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为(  )
分析:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.
解答:解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,

∵∠CAD=∠BAD(角平分线的性质),
CD
=
BD

∴∠DOB=∠OAC=2∠BAD,
∴△AOF≌△OED,
∴OE=AF=
1
2
AC=3cm,
在Rt△DOE中,DE=
OD2-OE2
=4cm,
在Rt△ADE中,AD=
DE2+AE2
=4
5
cm.
故选A.
点评:本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•内江)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:
3
(即AB:BC=1:
3
),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•内江)如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.
(1)求证:BC平分∠PBD;
(2)求证:BC2=AB•BD;
(3)若PA=6,PC=6
2
,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•内江)如图,反比例函数y=
k
x
(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•内江)如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•内江)如图,已知直线l:y=
3
x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为
(2097152,0)
(2097152,0)

查看答案和解析>>

同步练习册答案