精英家教网 > 初中数学 > 题目详情

如图所示,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.
 
(1)求证:四边形BCEF是平行四边形;
(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.

(1)由AF=DC可得AC=DF,再有AB=DE,∠A=∠D即可证得△ABC≌DEF,即得BC=EF,∠ACB=∠DFE,则可得BC∥EF,从而证得四边形BCEF是平行四边形;(2)

解析试题分析:(1)由AF=DC可得AC=DF,再有AB=DE,∠A=∠D即可证得△ABC≌DEF,即得BC=EF,∠ACB=∠DFE,则可得BC∥EF,从而证得四边形BCEF是平行四边形;
(2)连接BE,交CF与点G,由四边形BCEF是平行四边形,可知当BE⊥CF时,四边形BCEF是菱形,先根据勾股定理求得AC的长,证得△ABC∽△BGC,根据相似三角形的性质可得CG的长,从而可以求得结果.
(1)∵AF=DC,
∴AF+FC=DC+FC,即AC=DF
在△ABC和△DEF中,

∴△ABC≌DEF(SAS),
∴BC=EF,∠ACB=∠DFE,
∴BC∥EF,
∴四边形BCEF是平行四边形;
(2)连接BE,交CF与点G,

∵四边形BCEF是平行四边形,
∴当BE⊥CF时,四边形BCEF是菱形,
∵∠ABC=90°,AB=4,BC=3,
∴AC==5,
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,
∴△ABC∽△BGC,
=,即=
∴CG=
∵FG=CG,
∴FC=2CG=
∴AF=AC﹣FC=5﹣=
∴当AF=时,四边形BCEF是菱形.
考点:全等三角形的判定和性质,平行四边形、菱形的判定和性质,勾股定理,相似三角形的判定和性质
点评:特殊四边形的判定和性质的应用是初中数学极为重要的知识,贯穿于整个初中数学的学习,与各个知识点联系极为容易,是中考的热点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,点E,F分别是线段AC,BC的中点,若EF=2.5厘米,求线段AB的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

11、正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形ABCD的边长为4,FG=3,FP=1,则△DEK的面积为
9

查看答案和解析>>

科目:初中数学 来源: 题型:

8、正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,且G为BC的三等分点,R为EF中点,正方形BEFG的边长为4,则△DEK的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鄂州)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2012个正方形的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,点C在线段BE上,在BE同侧作等边△ABC和等边△DCE,那么,从旋转的角度我们可以看到,△ACE旋转后与△BCD重合.
(1)写出旋转角的度数及旋转方向;
(2)在图中经过旋转后能够重合的三角形共有哪几对?
(3)如果∠2=40°,那么∠BDE=
80°
80°

查看答案和解析>>

同步练习册答案