精英家教网 > 初中数学 > 题目详情
3.分式的化简求值:$\frac{{x}^{2}-1}{x-1}$•(1+$\frac{1}{x+1}$),其中x=$\sqrt{3}$-2.

分析 根据分式的加法和乘法可以化简题目中的式子,然后将x的值代入即可解答本题.

解答 解:$\frac{{x}^{2}-1}{x-1}$•(1+$\frac{1}{x+1}$)
=$\frac{(x+1)(x-1)}{x-1}•\frac{x+1+1}{x+1}$
=x+2,
当x=$\sqrt{3}$-2时,原式=$\sqrt{3}$-2+2=$\sqrt{3}$.

点评 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.已知点(3,y1),(2,y2)都在直线y=-3x+2上,则y1 y2大小关系是(  )
A.y1>y2B.y1=y2C.y1<y2D.不能比较

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧$\widehat{{P_1}{P_2}}$,$\widehat{{P_2}{P_3}}$,$\widehat{{P_3}{P_4}}$,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(-1,0),P3(0,-1),则该折线上的点P9的坐标为(  )
A.(-6,24)B.(-6,25)C.(-5,24)D.(-5,25)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,已知四边形OABC是菱形,OC在x轴上,B(18,6),反比例函数y=$\frac{k}{x}$(k≠0)的图象经过点A,与OB交于点E.
(1)求出k;
(2)求OE:EB.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列命题中,正确的是(  )
A.对角线相等的平行四边形是菱形
B.有两边及一角相等的两个三角形全等
C.同位角相等
D.直角三角形斜边上的中线等于斜边的一半

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简,再求值:(x-4+$\frac{9}{x+2}$)÷$\frac{{(x-1)}^{2}}{{x}^{2}-4}$,其中x的值从$\left\{\begin{array}{l}{-x<2}\\{2x-1≤4}\end{array}\right.$的整数解中选取一个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.
(1)每个篮球和足球各需多少元?
(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是(  )
A.sinα=cosαB.tanC=2C.sinβ=cosβD.tanα=1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.
(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;
(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=$\frac{3}{2}$,连接CD,请直接写出线段CD的长.

查看答案和解析>>

同步练习册答案