精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.

18°. 【解析】试题分析:根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数. 试题解析:∵∠C=∠ABC=2∠A, ∴∠C+∠ABC+∠A=5∠A=180°, ∴∠A=36°. 则∠C=∠ABC=2∠A=72°. 又BD是AC边上的高, 则∠DBC=90°-∠C=18°.
练习册系列答案
相关习题

科目:初中数学 来源:山西省吕梁市孝义市2016-2017学年九年级(上)期末考试数学试卷 题型:解答题

解下列方程

(1)2x2﹣4x=12

(2)4x(2x+1)=6x+3.

(1)x=1±(2)x=﹣或x= 【解析】试题分析:(1)用配方法求【解析】 方程两边除以2把二次项系数化为1,然后两边加上一次项系数一半的平方,使左边化为完全平方式,右边是常数项,然后直接开平方求解即可; (2)把方程右边的项提出公因式3后移至左边,再利用提出公因式(2x+1),使方程转化为两个因式的积等于0的形式,然后转化为两个一元一次方程求解即可. 试题解析: 【解...

查看答案和解析>>

科目:初中数学 来源:2017-2018学年黑龙江省大庆市杜尔伯特县九年级(上)期末数学试卷(五四学制) 题型:单选题

如图,弦AB⊥OC,垂足为点C,连接OA,若OC=2,AB=4,则OA等于( )

A. 2 B. 2 C. 3 D. 2

A 【解析】试题解析:由垂径定理可得: 故选A. 定睛:垂直于弦的直径,平分弦并且平分弦所对的两条弧.

查看答案和解析>>

科目:初中数学 来源:2017-2018学年七年级数学北师大版上册:第4章 基本平面图形 单元测试卷 题型:单选题

下图中射线OA与OB表示同一条射线的是(  )

A. (A) B. (B) C. (C) D. (D)

B 【解析】试题解析:A、方向相反,故A不是同一条射线; B、端点相同,方向相同,故C是同一条射线; C、方向不同,故D不是同一条射线; D、方向相反,故B不是同一条射线; 故选B.

查看答案和解析>>

科目:初中数学 来源:山东省德州地区2017-2018学年度第一学期期末检测八年级数学试卷 题型:解答题

已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.

【发现】

(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=   °,△CBD是   三角形;

【探索】

(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;

【应用】

(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有   .(只填序号)

①2个 ②3个 ③4个 ④4个以上

(1)60,等边;(2)等边三角形,证明见解析(3)④. 【解析】试题分析:(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论; (2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论; (3)先判断出∠POE=∠POF=60°,先构造出等边三...

查看答案和解析>>

科目:初中数学 来源:山东省德州地区2017-2018学年度第一学期期末检测八年级数学试卷 题型:填空题

如图,△ABC≌△,其中∠A=36°,∠C=24°,则∠B=_____ .

120° 【解析】 , ∴∠C=∠C′=24°, ∴∠B=180°-36°-24°=120°.

查看答案和解析>>

科目:初中数学 来源:山东省德州地区2017-2018学年度第一学期期末检测八年级数学试卷 题型:单选题

如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从四个点中找出符合条件的点P,则点P有(   )个.

A. 1个 B. 2个 C. 3个 D. 4个

C 【解析】试题解析:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个, 故选C.

查看答案和解析>>

科目:初中数学 来源:广东省汕头市澄海区2018届九年级上学期期末质量检测数学试卷 题型:填空题

有一个二次函数的图象,三位同学分别说了它的一些特点:

甲:与轴只有一个交点;

乙:对称轴是直线

丙:与y轴的交点到原点的距离为3.

满足上述全部特点的二次函数的解析式为______________________.

或 【解析】试题解析: ∵二次函数的对称轴为直线x=3, ∴k=3, ∴二次函数的解析式为 ∵与y轴的交点到原点的距离为3, ∴与y轴交于点(0,3)或(0,?3), 把(0,3)代入得, 把(0,?3)代入得, ∴解析式为: 或. 故答案为: 或.

查看答案和解析>>

科目:初中数学 来源:广西合浦县2017年秋季学期教学质量监测七年级数学试卷 题型:解答题

已知:b是最大的负整数,且a,b,c满足|a+b|+(4-c)2016 =0,试回答问题:

(1)请直接写出a,b,c的值;

(2)若a,b,c所对应的点分别为A,B,C,点P为一动点,其对应的数为x,点P在0到1之间运动时(即0≤x≤1),请化简式子:|x+1|-|1-x|+2|x-4|;

(3)在(1)、(2)的条件下,点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和C分别以每秒3个单位长度和8个单位长度的速度向右运动,假设t秒后,若点B与点C之间的距离表示为BC,点A与B之间的距离表示为AB.请问:AB-BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.

(1) a=-1,b=1,c=4;(2)8;(3) AB-BC的值是否随着时间t的变化而改变. 【解析】分析:(1)根据b是最大的负整数,即可得出b的值,再根据绝对值及偶次方的非负性即可得出a、c的值;(2)分析当0≤x≤1时,x+1、1-x、x-4的正负,去掉绝对值符号即可得出结论;(3)找出运动时间为t时,点A、B、C对应的数,再根据两点间的距离公式找出AB、BC的长度,二者做差后即可得...

查看答案和解析>>

同步练习册答案