精英家教网 > 初中数学 > 题目详情

【题目】已知abc是等腰三角形ABC的三条边的长,其中a=3,如果bc是关于x的一元ニ次方程-9+m=0的两个根,求m的値.

【答案】

【解析】

由于题中没有说明谁是腰,故需分类讨论:①当bc为腰时,此方程有两个相等的实数根,△=0即可;②3为腰时,代入求出m即可.需要注意的是把bc求出以后要验证是否满足三边关系.

解:①若bc为腰时,

bc是关于的方程-9+m=0的两个根

故此方程有两个相等的实数根

81-4m=0

解得

代入方程,并化简得

-9+=0

解方程得3能构成三角形

.

②若3为腰时,c=3b=3

bc是关于的方程-9+m=0的两个根

∴3是-9+m=0的根

代入并解得m=18

m=18代入原方程得:

解得两根为36,此时构不成三角形,故不成立.

综上所述:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,点OAC边上的一个动点,过点O作直线MN∥BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.

(1)判断OEOF的大小关系?并说明理由?

(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题的提出:

如果点P是锐角ABC内一动点,如何确定一个位置,使点PABC的三顶点的距离之和PA+PB+PC的值为最小?

问题的转化:

(1)ΔAPC绕点A逆时针旋转60度得到连接这样就把确定PA+PB+PC的最小值的问题转化成确定的最小值的问题了,请你利用如图证明:

问题的解决:

(2)当点P到锐角ABC的三项点的距离之和PA+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置:_____________________________

问题的延伸:

(3)如图是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD平分∠BAC,且BD=CDDEAB于点EDFAC于点F.

1)求证:AB=AC

2)若∠BAC=60°BC=6,求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边ABC,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点CCFAB交直线DN于点F.

1)当点D在线段BC上,∠NDB为锐角时,如图①.

①判断∠1与∠2的大小关系,并说明理由;

②过点FFMBC交射线AB于点M,求证:CF+BE=CD

2)①当点D在线段BC的延长线上,∠NDB为锐角时,如图②,请直接写出线段CFBECD之间的数量关系;

②当点D在线段CB的延长线上,∠NDB为钝角或直角时,如图③,请直接写出线段CFBECD之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图湛河两岸ABEF平行小亮同学假期在湛河边A点处测得对岸河边C处视线与湛河岸的夹角∠CAB=37°沿河岸前行140米到点B测得对岸C处的视线与湛河岸夹角∠CBA=45°.问湛河的宽度约多少米?(参考数据sin37°≈0.60cos37°=0.80tan37°=0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:

①△BO′A可以由△BOC绕点B逆时针旋转60°得到;&

②点O与O′的距离为4;

③∠AOB=150°;

④四边形AOBO′的面积为6+3

⑤S△AOC+S△AOB=6+.

其中正确的结论是_______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】青年志愿者爱心小分队赴山村送温暖,准备为困难村民购买一些米面.已知购买1袋大米、4袋面粉,共需240元;购买2袋大米、1袋面粉,共需165.

(1)求每袋大米和面粉各多少元?

(2)如果爱心小分队计划购买这些米面共40袋,总费用不超过2140元,那么至少购买多少袋面粉?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程

1)求证:该一元二次方程总有两个实数根;

2)若该方程只有一个小于4的根,求m的取值范围;

3)若x1x2为方程的两个根,且nx12+x224,判断动点所形成的数图象是否经过点,并说明理由.

查看答案和解析>>

同步练习册答案