精英家教网 > 初中数学 > 题目详情
(2007•中山区二模)已知:如图1,点O为正方形ABCD内任一点,连接AO、BO,分别以AO、BO为一边作如图所示正方形BOMN和正方形AOFE,连接CN
(1)AE、CN之间有怎样的关系?请验证;
(2)若点O是正方形ABCD外部一点,如图2,其他条件不变(1)的结论是否成立?请验证.
分析:(1)AE=CN,AE∥CN,理由为:连接ED,EC,AN,如图1所示,由正方形ABCD、AOFE,得到一对角为直角,两对边相等,利用同角的余角相等,利用SAS得出三角形AED与三角形AOB全等,由全等三角形对应边相等得到DE=BO,AE=CN,再由BN=BO,等量代换得到DE=BN,同理得到三角形EDC与三角形ABN全等,利用全等三角形的对应边相等得到EC=AN,利用两对对应边相等的四边形为平行四边形得到AECN为平行四边形,利用平行四边形的对应边平行且相等即可得证;
(2)AE=CN,AE∥CN,理由为:连接ED,EC,AN,如图2所示,同理即可证明.
解答:
证明:(1)AE=CN,AE∥CN,理由为:
连接ED、AN、EC,如图1所示,
∵正方形ABCD、AOFE,
∴∠DAB=∠EAO=90°,AO=AF,AD=AB,
∴∠EAD+∠DAO=90°,∠DAO+∠OAB=90°,
∴∠EAD=∠OAB,
在△AED和△ABO中,
AE=AO
∠EAD=∠ABO
AD=AB

∴△AED≌△ABO(SAS),
∴ED=BO,
∵BO=BN,
∴ED=BN,
同理AE=CN,
∵△AED≌△CBN,
∴∠ADE=∠CBN,
∴∠ADE+90°=∠CBN+90°,即∠EDC=∠ABN,
在△EDC和△ABN中,
DC=AB
∠EDC=∠ABN
ED=BN

∴△EDC≌△ABN(SAS),
∴EC=AN,
∴四边形AECN是平行四边形,
∴AE=CN,AE∥CN;
(2)结论不变,AE=CN,AE∥CN,
证明:连接ED、AN、EC,如图2所示,
同上问证明△AED≌△CBN≌△AOB,
∴AE=CN,△EDC≌△ABN,
∴AN=EC,
∴四边形AECN是平行四边形,
∴AE=CN,AE∥CN.
点评:此题考查了正方形的性质,全等三角形的判定与性质,平行四边形的判定与性质,熟练掌握正方形的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2007•中山区二模)根据下列表格中的对应值,关于x的方程ax2+bx+c=0(a≠0)的一个解x得范围正确的是(  )
x 3.23 3.24 3.25 3.26
ax2+bx+c=0 -0.06 -0.02 0.03 0.07

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•中山区二模)我市冬季某一天的最高气温为-1℃,最低气温为-6℃,那么这一天我市气温t(℃)的取值范围是
-6≤t≤-1
-6≤t≤-1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•中山区二模)观察下列各式:1×8+1=9,12×8+2=98,123×8+3=987,…,猜测123456789×8+9=
987654321
987654321

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•中山区二模)某校办厂两年内产值从3000万元增加到3630万元,设平均每年增长率是x,根据题意,可列方程为
3000(1+x)2=3630
3000(1+x)2=3630

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•中山区二模)如图,正方形ABCD的边BC在x轴的正半轴上,OB=1,M为对角线BD的中点,函数y=
3x
的图象经过A、M两点,与CD交于点N,则CN:DN的值为
1:3
1:3

查看答案和解析>>

同步练习册答案