精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠B=60°,⊙O是ABC的外接圆,过点A作O的切线,交CO的延长线于点M,CM交O于点D.

(1)求证:AM=AC;

(2)若AC=3,求MC的长.

【答案】(1)证明见解析(2)3

【解析】试题分析:(1)连接OA,可求出∠AOC=120°,得到∠OCA的度数,由切线的性质求出∠M的度数,即可得到答案;

2)作AG⊥CMG,由直角三角形的性质求出AG的长,由勾股定理求出CG,即可得到答案.

试题解析:(1)连接OA∵AM⊙O的切线,∴∠OAM=90°∵∠B=60°∴∠AOC=120°∵OA=OC∴∠OCA=∠OAC=30°∴∠AOM=60°∴∠M=30°∴∠OCA=∠M∴AM=AC

2)作AGCMG∵∠OCA=30°AC=3AG=,由勾股定理的,CG=,则MC=2CG=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我国古代数学的许多发现都曾位居世界前列,其中杨辉三角就是一大重要研究成果.如图所示的三角形数表,称杨辉三角.具体法则:两侧的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+bnn为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律:

1)根据上面的规律,写出(a+b5的展开式;

2)利用上面的规律计算:(﹣34+4×(﹣33×2+6×(﹣32×22+4×(﹣3×23+24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)作侧面和底面,加工成如图2所示的竖式和横式两种无盖的长方体纸箱.(加工时接缝材料不计)

1 2

1)若该厂仓库里有1000张正方形纸板和2000张长方形纸板。问竖式和横式纸箱各加工多少个,恰好将库存的两种纸板全部用完?

2)该工厂原计划用若干天加工纸箱2400个,后来由于对方急需要货,实际加工时每天加工速度是原计划的1.5倍,这样提前2天完成了任务,问原计划每天加工纸箱多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,ACBD相交于点OAOB=60°,BD=4,将ABC沿直线AC翻折后,点B落在点E处,那么SAED=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在等边ABCDABC内的一点ADB=120°ADC=90°ABD绕点A逆时针旋转60°ACE连接DE

1)求证AD=DE

2)求DCE的度数

3)若BD=1ADCD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“知识改变命运,科技繁荣祖国”.我市中小学每年都要举办一届科技运动会.下图为我市某校2009年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:

(1)该校参加车模、建模比赛的人数分别是 人和 人;

(2)该校参加航模比赛的总人数是 人,空模所在扇形的圆心角的度数是 °,并把条形统计图补充完整;(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑)

(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年我市中小学参加航模比赛人数共有2485人,请你估算今年参加航模比赛的获奖人数约是多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列能判定AB∥CD的条件有( )个.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一座桥如图,桥下水面宽度AB是20米,高CD是4米.要使高为3米的船通过,则其宽度须不超过多少米.

(1)如图1,若把桥看做是抛物线的一部分,建立如图坐标系.

①求抛物线的解析式;

②要使高为3米的船通过,则其宽度须不超过多少米?

(2)如图2,若把桥看做是圆的一部分.

①求圆的半径;

②要使高为3米的船通过,则其宽度须不超过多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+5的图象与反比例函数k≠0)在第一象限的图象交于A(1,n)和B两点.

(1)求反比例函数的解析式及点B坐标;

(2)在第一象限内,当一次函数y=-x+5的值大于反比例函数k≠0)的值时,写出自变量x的取值范围.

查看答案和解析>>

同步练习册答案