精英家教网 > 初中数学 > 题目详情

【题目】小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.
(1)求∠CAO′的度数.
(2)显示屏的顶部B′比原来升高了多少?
(3)如图4,垫入散热架后,要使显示屏O′B与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?

【答案】
(1)解:∵O′C⊥OA于C,OA=OB=24cm,

∴sin∠CAO′=

∴∠CAO′=30°


(2)解:过点B作BD⊥AO交AO的延长线于D

∵sin∠BOD=

∴BD=OBsin∠BOD,

∵∠AOB=120°,

∴∠BOD=60°,

∴BD=OBsin∠BOD=24× =12

∵O′C⊥OA,∠CAO′=30°,

∴∠AO′C=60°,

∵∠AO′B′=120°,

∴∠AO′B′+∠AO′C=180°,

∴O′B′+O′C﹣BD=24+12﹣12 =36﹣12

∴显示屏的顶部B′比原来升高了(36﹣12 )cm


(3)解:显示屏O′B′应绕点O′按顺时针方向旋转30°,

理由:∵显示屏O′B与水平线的夹角仍保持120°,

∴∠EO′F=120°,

∴∠FO′A=∠CAO′=30°,

∵∠AO′B′=120°,

∴∠EO′B′=∠FO′A=30°,

∴显示屏O′B′应绕点O′按顺时针方向旋转30°


【解析】(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24× =12 ,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.
【考点精析】根据题目的已知条件,利用旋转的性质的相关知识可以得到问题的答案,需要掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P,AC=PC,∠COB=2∠PCB.

(1)求证:PC 是⊙O 的切线;
(2)求证:
(3)点M 是弧AB 的中点,CM 交AB 于点N,若AB=8,求MNMC 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算1+4+9+16+25+…的前29项的和是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:

成绩x
人数
部门

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

0

0

1

11

7

1

(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:

部门

平均数

中位数

众数

78.3

77.5

75

78

80.5

81

得出结论:a.估计乙部门生产技能优秀的员工人数为;b.可以推断出部门员工的生产技能水平较高,理由为 . (至少从两个不同的角度说明推断的合理性)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1,点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0).设点M转过的路程为m(0<m<1),随着点M的转动,当m从 变化到 时,点N相应移动的路经长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.
(1)若α=0°,则DF=BF,请加以证明;
(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;
(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:

时间x(天)

1≤x<50

50≤x≤90

售价(元/件)

x+40

90

每天销量(件)

200﹣2x

已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果抛物线y=﹣x2+bx+c经过A(0,﹣2),B(﹣1,1)两点,那么此抛物线经过(
A.第一、二、三、四象限
B.第一、二、三象限
C.第一、二、四象限
D.第二、三、四象限

查看答案和解析>>

同步练习册答案