精英家教网 > 初中数学 > 题目详情
14.化简:$\frac{2}{x-1}$+2=$\frac{2x}{x-1}$.

分析 原式通分并利用同分母分式的加法法则计算即可得到结果.

解答 解:原式=$\frac{2}{x-1}$+$\frac{2(x-1)}{x-1}$=$\frac{2x}{x-1}$,
故答案为:$\frac{2x}{x-1}$

点评 此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.把多边形的某些边向两方延长,其他各边若不全在延长所得直线的同侧,则把这样的多边形叫做凹多边形,如图(1)四边形ABCD中,作BC的延长线CM,则边AB、CD分别在直线BM的两侧,所以四边形ABCD就是一个凹四边形,我们来简单研究凹多边形的边和角的性质.
(1)请你画一个凹五边形;
(2)如图②,在凹六边形ABCDEF中,探索∠BCD与∠A、∠B、∠D、∠E、∠F之间的关系;
(3)如图①,在凹四边形ABCD中,证明AB+AD>BC+CD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知a-b=8,ab=-15.则a2+b2=34.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在平面直角坐标系中,直线l与坐标轴相交于点M(3,0),N(0,-4),反比例函数y=$\frac{k}{x}$(x>0)的图象经过Rt△MON的外心A.
(1)求直线l的解析式;
(2)直接写出点A坐标及k值;
(3)在函数y=$\frac{k}{x}$(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P,若△OMP的面积与△OBC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,抛物线y=ax2+bx+4交x轴于A、B两点(点A在点B的左侧),交y于点C,连接AC、BC,其中CO=BO=2AO

(1)求抛物线的解析式;
(2)点Q为直线BC上方的抛物线上一点,过点Q作QE∥AC交BC于E,作QN⊥x轴于N,交BC于M,当△EMQ的周长L最大时,求点Q的坐标及L的最大值;
(3)如图2,在(2)的结论下,连接AQ分别交BC于F,交OC于G,四边形BOGF从F开始沿射线FC平移,同时点P从C开始沿折线CO-OB运动,且点P的运动速度为四边形BOGF平移速度的$\sqrt{2}$倍,当点P到达点B时四边形BOGF停止运动,设四边形BOGF平移过程中对应的图形为B1O1G1F1,当△PFF1为等腰三角形时,求B1F长度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.把多项式4a3-12a2+9a分解因式的结果是a(2a-3)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,每个图形都由同样大小的正方形按照一定的规律组成,其中第①个图形面积为6cm2,第②个图形的面积为18cm2,第③个图形的面积为36cm2,…,那么第⑥个图形面积为126cm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形,正方形,正六边形,那么另外一个是(  )
A.正三角形B.正方形C.正五边形D.正六边形

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.计算:(-$\frac{1}{2}$)-2-$\root{3}{8}$=2.

查看答案和解析>>

同步练习册答案