精英家教网 > 初中数学 > 题目详情
已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)如图①,若AB=2,∠P=30°,求AP的长(结果保留根号);
(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.
(1)∵AB是⊙O的直径,AP是切线,
∴∠BAP=90°.
在Rt△PAB中,AB=2,∠P=30°,
∴BP=2AB=2×2=4.
由勾股定理,得AP=
BP2-AB2
=
42-22
=2
3


(2)如图,连接OC、AC.
∵AB是⊙O的直径,
∴∠BCA=90°,又∵∠ACP=180°-∠BCA=90°.
在Rt△APC中,D为AP的中点,
CD=
1
2
AP=AD

∴∠4=∠3.
又∵OC=OA,
∴∠1=∠2.
∵∠2+∠4=∠PAB=90°,
∴∠1+∠3=∠2+∠4=90°.
即OC⊥CD.
∴直线CD是⊙O的切线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E是⊙O上一点,D是AM上一点,连接DE并延长交BN于点C,且ODBE,OFBN.
(1)求证:DE与⊙O相切;
(2)求证:OF=
1
2
CD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2二二7•福州)如图,已知:△ABC内接于⊙O,点D在OCx延长线上,4inB=
7
2
,∠D=3二度.
(7)求证:AD是⊙Ox切线;
(2)若AC=六,求ADx长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.
(1)求证:DB为⊙O的切线.
(2)若AD=1,PB=BO,求弦AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )
A.OCAEB.EC=BCC.∠DAE=∠ABED.AC⊥OE

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知PAB、PCD为⊙O的两条割线,PA=8,AB=10,CD=7,∠P=60°,则⊙O的半径为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等腰△ABC中,AB=AC=13,BC=10,以AC为直径作⊙O交BC于点D,交AB于点G,过点D作⊙O的切线交AB于点E,交AC的延长线与点F.
(1)求证:EF⊥AB;
(2)求cos∠F的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,求
BC
的长.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,A为⊙O的弦EF上的一点,OB是和这条弦垂直的半径,垂足为H,BA的延长线交⊙O于点C,过点C作⊙O的切线与EF的延长线相交于点D.
(1)求证:DA=DC;
(2)当DF:EF=1:8,且DF=
2
时,求AB•AC的值;
(3)将图1中的EF所在直线往上平行移动到⊙O外,如图2的位置,使EF与OB,延长线垂直,垂足为H,A为EF上异于H的一点,且AH小于⊙O的半径,AB的延长线交⊙O于C,过C作⊙O的切线交EF于D.试猜想DA=DC是否仍然成立?并证明你的结论.

查看答案和解析>>

同步练习册答案