精英家教网 > 初中数学 > 题目详情

如图,⊙O中半径OA=2,∠AOB=60°,P为数学公式上的点,PM⊥OA于M,PN⊥OB于N.
(1)若P是数学公式的中点,求MN的长;
(2)若点P不是数学公式的中点,则MN的长度是否发生变化?请说明理由;
(3)若∠AOB=45°,求MN的长.(不用证明)

解:(1)连接OP,
∵P为中点
∴∠AOP=∠BOP=∠AOB=30°
∵PM⊥OA于Mcos∠AOP==
∴OM=
同理ON=
∴OM=ON,
∵∠AOB=60°,
∴△OMN为等边三角形
∴MN=

(2)长度不变.
设Pn为中点,垂足为Mn,Nn分别延长PM,PN,PnMn,PnNn交⊙O于E,F,
En,Fn由于∠EPF=∠EnPnFn=120°
∴EF=EnFn
又MN,MnNn分别为△PEF,△PnEnFn的中位线
∴MN=EF,MnNn=EnFn
∴MN=MnNn

(3)由(1),(2)可知P点取上任一点时MN长度不变,包括P点与A,B重合时,
故当∠AOB=45°时,
让点P与点A重合,
PN=•2=当∠AOB=45°时,
MN=
分析:(1)P是弧AB的中点,那么可连接OP,根据垂径定理即可得出OP⊥MN,∠MOP=30°,根据OP⊥MN构建的直角三角形和∠MOP的度数,半径的长已知,即可求出MN的值.
(2)如果P不是弧AB的中点,可作出(1)中的情况,然后找中间值进行比较,找出弧AB的中点Pn,过Pn作Pn⊥OA于Mn,Pn⊥OB于Nn.由于过P和Pn的线段都垂直于半径,那么可联系中位线的知识进行求解,可延长这些线段,通过构建三角形,通过证这两个三角形的底边相等来得出它们的中位线相等进而得出P是弧AB的中点是,MN的长度不变.
(3)由于P在任何位置MN的长度都不变,如果让A点与P点重合,那么∠AOB=45°,此时可在直角三角形OPN中,根据∠AOB的度数和半径的长来求出MN的值.
点评:本题主要考查了圆周角定理,垂径定理以及中位线的应用等知识点,要注意(2)中辅助线的作法,根据题中的条件构建出和所求的条件相关的三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,⊙O中半径OA=2,∠AOB=60°,P为
AB
上的点,PM⊥OA于M,精英家教网PN⊥OB于N.
(1)若P是
AB
的中点,求MN的长;
(2)若点P不是
AB
的中点,则MN的长度是否发生变化?请说明理由;
(3)若∠AOB=45°,求MN的长.(不用证明)

查看答案和解析>>

科目:初中数学 来源:轻松练习30分(测试卷) 初三几何上册 题型:022

如图,⊙O中半径OA与半径OC垂直, D是上一点,连结AD并延长交OC的延长线于B,若∠B=,⊙O的直径为30cm,则BD=________.

查看答案和解析>>

科目:初中数学 来源:海淀区模拟 题型:解答题

如图,⊙O中半径OA=2,∠AOB=60°,P为






AB
上的点,PM⊥OA于M,
精英家教网
PN⊥OB于N.
(1)若P是






AB
的中点,求MN的长;
(2)若点P不是






AB
的中点,则MN的长度是否发生变化?请说明理由;
(3)若∠AOB=45°,求MN的长.(不用证明)

查看答案和解析>>

科目:初中数学 来源:2003年北京市海淀区中考数学模拟试卷(解析版) 题型:解答题

(2003•海淀区模拟)如图,⊙O中半径OA=2,∠AOB=60°,P为上的点,PM⊥OA于M,PN⊥OB于N.
(1)若P是的中点,求MN的长;
(2)若点P不是的中点,则MN的长度是否发生变化?请说明理由;
(3)若∠AOB=45°,求MN的长.(不用证明)

查看答案和解析>>

同步练习册答案