分析 (1)由圆周角定理得出∠ACB=90°,由勾股定理求出AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=2$\sqrt{5}$,得出OA=$\frac{1}{2}$AB=$\sqrt{5}$,证明△AOE∽△ACB,得出对应边成比例即可得出答案;(2)连接OC,由等腰三角形的性质得出∠1=∠A,由切线的性质得出OC⊥CD,得出∠2+∠CDE=90°,证出∠3=∠CDE,再由三角形的外角性质即可得出结论.
解答 解:(1)∵AB为⊙O的直径,
∴∠ACB=90°,
在Rt△ABC中,由勾股定理得:AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,
∴OA=$\frac{1}{2}$AB=$\sqrt{5}$,
∵OD⊥AB,
∴∠AOE=∠ACB=90°,
又∵∠A=∠A,
∴△AOE∽△ACB,
∴$\frac{OE}{BC}=\frac{OA}{AC}$,即$\frac{OE}{2}=\frac{\sqrt{5}}{4}$,
解得:OE=$\frac{\sqrt{5}}{2}$;
(2)∠CDE=2∠A,理由如下:
连接OC,如图所示:
∵OA=OC,
∴∠1=∠A,
∵CD是⊙O的切线,
∴OC⊥CD,
∴∠OCD=90°,
∴∠2+∠CDE=90°,
∵OD⊥AB,
∴∠2+∠3=90°,
∴∠3=∠CDE,
∵∠3=∠A+∠1=2∠A,
∴∠CDE=2∠A.
点评 本题考查了切线的性质、圆周角定理、勾股定理、相似三角形的判定与性质、等腰三角形的性质、直角三角形的性质、三角形的外角性质;熟练掌握圆周角定理和切线的性质是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $-\sqrt{2}$ | B. | $\sqrt{12}$ | C. | $\sqrt{\frac{1}{5}}$ | D. | $\sqrt{a^2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com