精英家教网 > 初中数学 > 题目详情

如图,△ABC内接于⊙O,BC=a,AC=b,∠A-∠B=90°,则⊙O的面积为________.

π(a2+b2
分析:先构造直角三角形,再根据直径所对的圆周角是90°和圆内接四边形的性质,找出弧AC=弧CE,最后利用勾股定理求出圆的直径,面积可求.
解答:解:过点B作圆的直径BE交圆于点E,则∠ECB=90°,
∴∠E+∠EBC=90°,
又圆内接四边形的对角互补,即∠E+∠A=180°,
∵∠A-∠ABC=90°,
∴∠CBA=∠CBE,弧AC=弧CE,CE=AC=b,
由勾股定理得,BE=
∴⊙O的半径=
∴圆的面积=π(a2+b2).
点评:本题利用了直径所对的圆周角是直角,圆内接四边形的性质,直角三角形的性质,勾股定理,圆面积公式求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案