精英家教网 > 初中数学 > 题目详情

【题目】老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.

(1)求条形图中被遮盖的数,并写出册数的中位数;

(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;

(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了   人.

【答案】(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为;(3)3

【解析】1)用读书为6册的人数除以它所占的百分比得到调查的总人数,再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,然后根据中位数的定义求册数的中位数;

(2)用读书为6册和7册的人数和除以总人数得到选中读书超过5册的学生的概率;

(3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.

1)抽查的学生总数为6÷25%=24(人),

读书为5册的学生数为24﹣5﹣6﹣4=9(人),

所以条形图中被遮盖的数为9,册数的中位数为5;

(2)选中读书超过5册的学生的概率=

(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人,

故答案为:3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)

【答案】8.7

【解析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.

试题解析:∵∠CBD=∠A+∠ACB

∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°

∴∠A=∠ACB

∴BC=AB=10(米).

在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).

答:这棵树CD的高度为8.7米.

考点:解直角三角形的应用

型】解答
束】
23

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.

(1)求抛物线y=﹣x2+ax+b的解析式;

(2)当点P是线段BC的中点时,求点P的坐标;

(3)在(2)的条件下,求sin∠OCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】|a|+|b|=|a+b|,则ab关系是(  )

A. ab的绝对值相等

B. ab异号

C. a+b的和是非负数

D. ab同号或ab其中一个为0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列条件中:A+B=∠CA:∠B:∠C156A90°﹣∠BA=∠BC中,能确定△ABC是直角三角形的条件有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了迎接全国文明城市创建,市交警队的一辆警车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2-3+2+1-2-1-2(单位:千米)

1)最后,这辆警车的司机如何向队长描述他的位置?

2)如果此时距离出发点东侧2千米处出现交通事故,队长命令他马上赶往现场处置,则警车在此次巡逻和处理事故中共耗油多少升?(已知每千米耗油0.2升)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电脑城出售一种台式电脑和液晶显示器,电脑每台定价2000元,液晶显示器每个定价400.国庆期间开展促销活动,向客户提供两种优惠方案:

方案①:买一台电脑送一个液晶显示器;

方案②:电脑和液晶显示器都按定价的付款.

现学校要更新微机教室设备,到该电脑城购买电脑30台,液晶显示器个(),

1)若学校分别按方案①或方案②购买,各需付款多少元?(用含的代数式表示);

2)若,通过计算说明此时学校按哪种方案购买较为合算?

3)当时,你能为学校想出一种更为省钱的购买方案吗?试写出你的购买方法.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADBE四点在同一条直线上,ADBEBCEFBCEF

1)求证:ACDF

2)若CD为∠ACB的平分线,∠A25°,∠E71°,求∠CDF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将BDE沿直线DE折叠,得到B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是(  )

A. ADF≌△CGE

B. B′FG的周长是一个定值

C. 四边形FOEC的面积是一个定值

D. 四边形OGB'F的面积是一个定值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC为等边三角形,在平面内找一点P,使△PAB△PBC△PAC均为等腰三角形,则这样的点P的个数为_____

查看答案和解析>>

同步练习册答案