精英家教网 > 初中数学 > 题目详情

【题目】如图所示,ABAD于点ACDAD于点D,∠C120°.若线段BCCD的和为12,则四边形ABCD的面积可能是(  )

A.24B.30C.45D.

【答案】A

【解析】

CCHABH,推出四边形ADCH是矩形,四边形ABCD是直角梯形,求得∠BCH30°,设BCx,则CD12x,得到AH12xBHxCHx,根据梯形的面积公式和二次函数的性质即可得到结论.

解:过CCHABH

ABADCDAD

∴∠A=∠ADC=∠AHC90°CDAB

∴四边形ADCH是矩形,四边形ABCD是直角梯形,

∴∠DCH90°CDAH

∵∠BCD120°

∴∠BCH30°

BCx,则CD12x

AH12xBHxCHx

∴四边形ABCD的面积=CD+ABCH12x+12x+x×x

∴四边形ABCD的面积=﹣x82+24

∴当x8时,四边形ABCD的面积有最大值24

即四边形ABCD的面积可能是24

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在创客教育理念的指引下,国内很多学校都纷纷建立创客实践及创客空间,致力于从小培养学生的创新精神和创造能力,某校开设了“3D”打印,数学编程,智能机器人,陶艺制作,这四门创客课程,为了了解学生对这四门创客课程的喜爱情况,数学兴趣小组对全校学生进行了随机问卷调查,将调查结果整理后绘制成如下的统计图表:

创客课程

频数

频率

“3D”打印

36

0.45

数学编程

0.25

智能机器人

16

b

陶艺制作

8

合计

a

1

根据图表中提供的信息回答下列问题:

1)统计表中的a________b________

2陶艺制作对应扇形的圆心角度数为________

3)若该校有学生2000人,请估算全校喜爱智能机器人的人数有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且BC两地相距120海里.

1)求出此时点A到岛礁C的距离;

2)若中海监50”A处沿AC方向向岛礁C驶去,当到达点A′时,测得点BA′的南偏东75°的方向上,求此时中国海监50”的航行距离.(注:结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】越野自行车是中学生喜爱的交通工具,市场巨大,竟争也激烈.某品牌经销商经营的型车去年销售总额为万元,今年每辆售价比去年降低元,若卖出的数量相同,销售总额将比去年减少

1)设今年型车每辆销售价为元,求的值;

2)该品牌经销商计划新进一批型车和新款型车共辆,且型车的进货数量不超过型车数量的两倍,请问应如何安排两种型号车的进货数量,才能使这批售出后获利最多?

两种型号车今年的进货和销售价格表

型车

型车

进货价

/

/

销售价

/

/

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图像与轴正半轴交于点,平行于轴的直线与该抛物线交于两点(点位于点左侧),与抛物线对称轴交于点

1)求的值;

2)设轴上的点(点位于点左侧),四边形为平行四边形.过点分别作轴的垂线,与抛物线交于点.若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在矩形ABCD中,AB4AD3,⊙C与对角线BD相切.

1)如图1,求⊙C的半径;

2)如图2,点P是⊙C上一个动点,连接APACAP交⊙C于点Q,若sinPAC,求∠CPA的度数和弧PQ的长;

3)如图,对角线AC与⊙C交于点E,点P是⊙C上一个动点,设点P到直线AC的距离为d,当0d时,请直接写出∠PCE度数的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】顶点为D的抛物线y=﹣x2+bx+cx轴于AB(30),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(40)

(1)求出抛物线的解析式;

(2)如图1,点M为线段BD上不与BD重合的一个动点,过点Mx轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求Sx之间的函数关系式,并求S的最大值;

(3)Px轴的正半轴上一个动点,过Px轴的垂线,交直线y=﹣x+mG,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.

请根据图中信息完成下列各题.

(1)将频数分布直方图补充完整人数;

(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;

(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台处的高度,某数学兴趣小组在电视塔附近一建筑物楼顶处测得塔处的仰角为45°,塔底部处的俯角为22°.已知建筑物的高约为61米,请计算观景台的高的值.

(结果精确到1米;参考数据:

查看答案和解析>>

同步练习册答案