精英家教网 > 初中数学 > 题目详情
如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.

(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
【答案】分析:(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;

(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:
①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M的坐标得出,CQ=3-x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.
②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).
③当CM=CP时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;
(3)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在三角形BFE中,BF=BO-OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.
解答:解:
(1)由题知:
解得:
∴所求抛物线解析式为:
y=-x2-2x+3;

(2)∵抛物线解析式为:
y=-x2-2x+3,
∴其对称轴为x==-1,
∴设P点坐标为(-1,a),当x=0时,y=3,
∴C(0,3),M(-1,0)
∴当CP=PM时,(-1)2+(3-a)2=a2,解得a=
∴P点坐标为:P(-1,);
∴当CM=PM时,(-1)2+32=a2,解得a=±
∴P点坐标为:P(-1,)或P(-1,-);
∴当CM=CP时,由勾股定理得:(-1)2+32=(-1)2+(3-a)2,解得a=6,
∴P点坐标为:P(-1,6)
综上所述存在符合条件的点P,其坐标为P(-1,)或P(-1,-
或P(-1,6)或P(-1,);

(3)过点E作EF⊥x轴于点F,设E(a,-a2-2a+3)(-3<a<0)
∴EF=-a2-2a+3,BF=a+3,OF=-a
∴S四边形BOCE=BF•EF+(OC+EF)•OF
=(a+3)•(-a2-2a+3)+(-a2-2a+6)•(-a)
=
=-+
∴当a=-时,S四边形BOCE最大,且最大值为
此时,点E坐标为(-).
点评:本题主要考查了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,点D、E在x轴上,CF交y轴于点B(0,2),且其面积为8:
(1)此抛物线的解析式;
(2)如图2,若点P为所求抛物线上的一动点,试判断以点P为圆心,PB为半径的圆与x轴的位置关系,并说明理由.
(3)如图2,设点P在抛物线上且与点A不重合,直线PB与抛物线的另一个交点为Q,过点P、Q分别作x轴的垂线,垂足分别为N、M,连接PO、QO.求证:△QMO∽△PNO.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知抛物线y=-x2+b x+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.
(1)求b,c的值.
(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由.
(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南沙区一模)如图1,已知抛物线y=
1
2
x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=2OA=4.
(1)求该抛物线的函数表达式;
(2)设P是(1)中抛物线上的一个动点,以P为圆心,R为半径作⊙P,求当⊙P与抛物线的对称轴l及x轴均相切时点P的坐标.
(3)动点E从点A出发,以每秒1个单位长度的速度向终点B运动,动点F从点B出发,以每秒
2
个单位长度的速度向终点C运动,过点E作EG∥y轴,交AC于点G(如图2).若E、F两点同时出发,运动时间为t.则当t为何值时,△EFG的面积是△ABC的面积的
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知抛物线y=ax2-2ax+b经过梯形OABC的四个顶点,若BC=10,梯形OABC的面积为18.
(1)求抛物线解析式;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,平移后的两条直线分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)如图3,设图1中点D坐标为(1,3),M为抛物线的顶点,动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知抛物线的顶点为A(O,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.
(1)求此抛物线的解析式;
(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.
①求证:PB=PS;
②判断△SBR的形状.

查看答案和解析>>

同步练习册答案