【题目】已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.
(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;
(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;
(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;
(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2﹣2x+3,顶点坐标为(﹣1,4);(2)点D(﹣1,2);(3)点P(,)(4)不存在,理由见解析.
【解析】
(1)利用待定系数法可求得函数的表达式,再通过配方即可求得顶点坐标;
(2)又S△CPD:S△BPD=1:2,可得BD=BC=×=,再利用解直角三角形的知识即可求得答案;
(3)设直线PE交x轴于点H,∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,解由①②构成的方程组即可求得答案;
(4)连接BC,过点P作y轴的平行线交BC于点H,设点P(x,﹣x2﹣2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,得到关于x的一元二次方程,根据方程解的情况即可得结论.
(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),
∴,
∴,
∴抛物线的表达式为:y=﹣x2﹣2x+3…①,
y=﹣x2﹣2x+3=-(x+1)2+4,
∴顶点坐标为(﹣1,4);
(2)设点D坐标为(xD,yD),∵OB=OC,∠BOC=90°,
∴∠CBO=45°,BC=,
∵S△CPD:S△BPD=1:2,
∴BD:DC=2:1,
∴BD=BC=×=,
∴xD=-3+ BDcos∠CBO=-3+2=-1, yD=BDsin∠CBO=2
∴点D(﹣1,2);
(3)如图2,设直线PE交x轴于点H,
∵∠OGE=15°,∠EOG=90°,
∴∠OEG=90°-15°=75°,
∵∠PEG=2∠OGE,
∴∠PEG=2∠OGE=30°,
∴∠OHE=∠OGE+∠PEG=45°,∠HEO=∠OEG-∠PEG=45°,
∴OH=OE=1,
∴H(-1,0),
设直线HE的解析式为y=mx+n,把H(-1,0)、E(0,-1)分别代入得,
解得,
∴直线HE的表达式为:y=﹣x﹣1…②,
联立①②并解得:,(舍去),
故点P(,);
(4)不存在,理由:
如图3,连接BC,过点P作y轴的平行线交BC于点H,
直线BC的表达式为:y=x+3,
设点P(x,﹣x2﹣2x+3),点H(x,x+3),
则S四边形BOCP=S△OBC+S△PBC=×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,
整理得:3x2+9x+7=0,
解得:△<0,故方程无解,
则不存在满足条件的点P.
科目:初中数学 来源: 题型:
【题目】“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.
(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)
(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了m%,求出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“前线医护人员”和全国人民的共同努力下,疫情得到了有效控制,宁波各大企业复工复产有序进行.为了实现员工“一站式”返岗,宁波某企业打算租赁5辆客车前往宁波东站接员工返岗.已知现有A、B两种客车,A型客车的载客量为45人/辆,每辆租金为400元;B型客车的载客量为30人/辆,每辆租金为280元.设租用A型客车为x辆,所需费用为y元.
(1)求y关于x的函数解析式;
(2)若该企业需要接的员工有205人,请求出租车费用最小值,并写出对应的租车方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,矩形CDEF的顶点E在边AB上,D,F两点分别在边AC,BC上,且,将矩形CDEF以每秒1个单位长度的速度沿射线CB方向匀速运动,当点C与点B重合时停止运动,设运动时间为t秒,矩形CDEF与△ABC重叠部分的面积为S,则反映S与t的函数关系的图象为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象与轴分别交于、两点,与轴交于点,.则由抛物线的特征写出如下结论:①;②;③;④.其中正确的个数是()
A. 4个B. 3个C. 2个D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,曲线经过点,直线与曲线围成的封闭区域为图象.
(1)求曲线的表达式;
(2)求出直线与曲线的交点坐标;
(3)直接写出图象上的整数点个数有_________个,它们是___________.
(注:横,纵坐标均为整数的点称为整点,图象包含边界)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数图象的顶点坐标为(3,8),该二次函数图像的对称轴与轴的交点为A,M是这个二次函数图像上的点,是原点
(1)不等式是否成立?请说明理由;
(2)设是△AMO的面积,求满足的所有点M的坐标.
(3)将(2)中符号条件的点M联结起来构成怎样的特殊图形?写出两条这个特殊图形的性质.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知是的高, 直角的顶点是射线上一动点, 交直线于点所在直线交直线于点F.
(1)判断△ABC的形状,并说明理由;
(2)若G为AE的中点,求tan∠EAF的值;
(3)在点E的运动过程中,若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知抛物线与x轴交于A、B两点,与y轴负方向交于C点,且.
(1)试求出抛物线的解析式;
(2)E为直线上.动点,F为抛物线对称轴上一点,当F点在对称轴上何处时,四边形ACFE的周长最短,并求出此时四边形的周长;
(3)如图(2),为x轴上一点,抛物线上x轴的上方是否存在点P,使得线段AP与直线CD相交且它们的夹角为45°,若存在这样的P点,请求出P点坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com