精英家教网 > 初中数学 > 题目详情
19.如图所示,在四边形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=6,CD=8,E,F分别是边AB、CD的中点,DH⊥BC于H,现有下列结论;
①∠CDH=30°;
②EF=4;
③四边形EFCH是菱形;
④S△EFC=3S△BEC
你认为结论正确的有①②③.(填写正确的序号)

分析 ①证出四边形ABHD是矩形,得出BH=AD=2,AB=DH,求出CH=BC-BH=4,得出CH=$\frac{1}{2}$CD,得出∠CDH=30°,①正确;
②由梯形中位线定理得出EF∥BC,EF=$\frac{1}{2}$(AD+BC)=4,②正确;
③证出四边形EFCH是平行四边形,再由EF=CF=4,得出四边形EFCH是菱形;④正确;求出S△EFC=2S△BEH.④错误;即可得出结论.

解答 解:①∵AD∥BC,AB⊥BC,DH⊥BC,
∴四边形ABHD是矩形,
∴BH=AD=2,AB=DH,
∴CH=BC-BH=6-2=4,
∵CD=8,
∴CH=$\frac{1}{2}$CD,
∴∠CDH=30°;①正确;

②∵E,F分别是边AB、CD的中点,
∴CF=$\frac{1}{2}$CD=4,EF∥BC,EF=$\frac{1}{2}$(AD+BC)=4,②正确;

③∵EF∥BC,EF=CH=4,
∴四边形EFCH是平行四边形,
又∵EF=CF=4,
∴四边形EFCH是菱形;③正确;

④∵EF=4,BH=2,
∴S△EFC=2S△BEH.④错误;
故选:①②③.

点评 本题考查了菱形的判定与性质、矩形的判定与性质、含30°角的直角三角形的判定、梯形中位线定理、平行四边形的判定以及三角形面积的计算;本题综合性强,有一定难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.已知:如图,在△ABC中,M、N分别是边AB、AC的中点,D是边BC延长线上的一点,且CD=$\frac{1}{2}$BC,联结CM、DN.
求证:四边形MCDN是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:
(1)计算:$\sqrt{16}$+$\root{3}{-27}$-|1-$\sqrt{2}$|;
(2)解方程组$\left\{{\begin{array}{l}{4x+3y=1}\\{2x-y=3}\end{array}}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程:
(1)1-$\frac{3}{2-x}$=$\frac{5-x}{x-2}$;
(2)$\frac{x+1}{4{x}^{2}-1}$=$\frac{3}{2x+1}$-$\frac{4}{4x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图1,在Rt△ABC中,∠A=90°,BC=10cm,点P,点Q同时从点B出发,点P以2cm/s的速度沿B→A→C运动,终点为C,点Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM和MN均为抛物线的一部分),给出以下结论:①AC=6cm;②曲线MN的解析式为y=-$\frac{4}{5}$t2+$\frac{28}{5}$t(4≤t≤7);③线段PQ的长度的最大值为$\frac{6}{5}$$\sqrt{10}$;④若△PQC与△ABC相似,则t=$\frac{40}{7}$秒,其中正确的说法是(  )
A.①②④B.②③④C.①③④D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图.在△ABC中.AB=AC=5cm,BC=6cm,AD是BC边上的高.点P由C出发沿CA方向匀速运动.速度为1cm/s.同时,直线EF由BC出发沿DA方向匀速运动.速度为1cm/s,EF∥BC,并且EF分别交AB、AD、AC于点E,Q,F,连接PQ.若设运动时间为t(s)(0<t<4),解答下列问题:
(1)当t为何值时,四边形BDFE是平行四边形?
(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形QDCP:S△ABC=9:20?若存在,求出此时t的值;若不存在,说明理由;
(4)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.等腰三角形的三边长分别为a,b,2,且a,b是关于x的一元二次方程x2-8x+n-2=0的两根,则n的值为18.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系中,以坐标原点O为圆心作⊙O分别交x轴,y轴于A,C和B,D,点M(4,3)为⊙O上一点,过M的直线y=kx+b(k<0)交x轴于点P,交y轴于点Q.
(1)若直线y=kx+b(k<0)是⊙O的切线,求k,b的值;
(2)若y=kx+b(k<0)与$\widehat{BM}$的另一个交点为N,直接写出k的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知一次函数y=kx+b的图象经过点B(0,10),且与正比例函数y=2x的图象相交于点A(2,a),则这两个函数图象与y轴所围成的三角形的面积是(  )
A.5B.10C.20D.40

查看答案和解析>>

同步练习册答案