精英家教网 > 初中数学 > 题目详情
11.数学实践活动小组实地测量山峰与山下广场的相对高度AB,器测量步骤如下:
(1)在测点C处安置测倾器,测得此时山顶A的仰角为30°;
(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上石塔顶部E的仰角为45°;
(3)已知测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;若石塔的高度为12米,请根据测量数据求出山峰与山下广场的相对高度AB.($\sqrt{3}$≈1.732,$\sqrt{2}≈1.414$,结果保留整数)

分析 首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造边角关系,进而可求出答案.

解答 解:设AH=x米,
在RT△EHG中,∵∠EGH=45°,
∴GH=EH=AE+AH=x+12,
∵GF=CD=288米,
∴HF=GH+GF=x+12+288=x+300,
在Rt△AHF中,∵∠AFH=30°,
∴AH=HF•tan∠AFH,即x=(x+300)•$\frac{\sqrt{3}}{3}$,
解得x=150($\sqrt{3}$+1).
∴AB=AH+BH≈409.8+1.5≈411(米)
答:山峰与山下广场的相对高度AB大约是411米.

点评 此题主要考查了解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.如图,在?ABCD中,AE⊥BC,垂足为E,AB=5,BC=8,sinB=$\frac{4}{5}$,那么S△CDE=10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时测得小船C的俯角是∠FDC=30°.若小华的眼睛与地面的距离是$\sqrt{3}$米,BG=1.5米,BG平行于AC所在的直线,迎水坡i=4:3,坡长AB=10米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长是多少?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.分解因式:x2-6x+9=(x-3)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.计算:
①$\sqrt{2}$+$\sqrt{\frac{1}{2}}$-($\sqrt{2}$-4)0=$\frac{3\sqrt{2}}{2}$-1;
②3÷$\sqrt{3}$×$\frac{1}{\sqrt{3}}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,对?ABCD对角线交点O的直线分别交AB的延长线于点E,交CD的延长线于点F,若AB=4,AE=6,则DF的长等于2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,已知正方形ABCD的边长为2,点O是正方形ABCD的中心,把正方形ABCD绕点O逆时针旋转45°得到正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分形成的正八边形的边长为2$\sqrt{2}$-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,菱形ABCD的两条对角线分别长4和6,点P是对角线AC上的一个动点,点M,N分别是边AB,BC的中点,则PM+PN的最小值是$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解不等式组$\left\{\begin{array}{l}{1+2x≤3+x}\\{4x-1<5x}\end{array}\right.$.

查看答案和解析>>

同步练习册答案