精英家教网 > 初中数学 > 题目详情

【题目】如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.

(1)求抛物线的函数表达式;

(2)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;

(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.

【答案】(1)y=x2﹣4x﹣5(2)(,﹣);(3)P(,0),Q(0,﹣

【解析】整体分析:

(1)用待定系数法求抛物线的解析式;(2)H(tt2-4t-5),用含t的代数式表示FH的长,求出CE的长,用对角线互相垂直的四边形的面积等于对角线积的一半,把四边形CHEF的面积表示为关于t的二次函数,用二次函数的性质求解;(3)作点M,K关于x轴,y轴对称点M′,K′,连接M′K′,分别交x,y轴于点P,Q,求出M′K′的解析式,即可得到点P,Q的坐标.

:(1)A(-10),B(50)代入y=ax2+bx-5

,解得

∴二次函数的表达式为y=x2-4x-5

(2)如图2,设H(tt2-4t-5),

CE||x轴,∴-5=x2-4x-5,解得,x1=0x2=4,

E(4-5),CE=4,

B(50)C(0-5),

∴直线BC的解析式为y2=x-5,∴F(tt-5),

CE||x轴,HF||y轴,∴CEHF,

∴四边形CHEF的面积=)2+

H(.

(3)如图3,

∵点K为顶点,∴K(2-9),

∴点K关于y轴的对称点K′的坐标为(-2-9).

M(4m),M(4-5),

∴点M关于x轴的对称点M′的坐标为(45).

设直线K′M′的解析式为y3=a3x+b3

,∴

∴直线BC的解析式为y3=

P,Q的坐标分别为P(0),Q(0-.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠B=90°,AB=8cmBC=6cmPQ是△ABC边上的两个动点,其中点P从点A开始沿AB方向运动,且速度为每秒1cm,点Q从点B开始沿BCA方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

(1)出发2秒后,求PQ的长;

(2)当点Q在边BC上运动时,出发几秒钟,△PQB能形成等腰三角形?

(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在ABC中,∠A=90°AB=AC=1PAC上不与AC重合的一动点,PQBCQQRABR

1)求证:PQ=CQ

2)设CP的长为xQR的长为y,求yx之间的函数关系式及自变量x的取值范围,并在平面直角坐标系作出函数图象

3PR能否平行于BC?如果能,试求出x的值;若不能,请简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一条数轴上从左到右依次取ABC三个点,且使得点AB到原点O的距离均为1个单位长度,点C到点A的距离为7个单位长度.

1)在数轴上点A所表示的数是__________,点C所表示的数是_____________.

2)若点PQ分别从点AC处出发,沿数轴以每秒1个单位长度和每秒3个单位长度的速度同时向左运动,运动时间为t秒,当PQ两点相距为4个单位长度时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系xOy中,一次函数y=kx+b的图象l1分别与x轴,y轴交于A150),B两点,正比例函数y=x的图象l2l1交于点Cm3).

1)求m的值及l1所对应的一次函数表达式;

2)根据图象,请直接写出在第一象限内,当一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;

(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;

(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?

请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点Ex轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB重合部分的面积为S.根据上述条件,回答下列问题:

(1)当矩形OEDC的顶点D在直线AB上时,t=

(2)当t=4时,直接写出S的值;

(3)求出St的函数关系式;

(4)若S=12,则t=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(感知)如图①,ABCD,点E在直线ABCD之间,连结AEBE,试说明∠BAE+DCE=AEC

(探究)当点E在如图②的位置时,其他条件不变,试说明∠AEC+BAE+DCE=360°

(应用)点EFG在直线ABCD之间,连结AEEFFGCG,其他条件不变,如图③,若∠EFG=36°,则∠BAE+AEF+FGC+DCG=______°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】共享单车被誉为新四大发明之一,如图1所示是某公司2017年向信阳市场提供一种共享自行车的实物图,车架档ACCD的长分别为45cm60cmACCD座杆CE的长为20cm,点ACE在同一条直线上,且∠CAB=75°,如图2

1)求车架档AD的长;

2)求车座点E到车架档AB的距离.(结果精确到1cm,参考数据:sin75°=0.9659cos75°=0.2588tan75°=3.7321

查看答案和解析>>

同步练习册答案