精英家教网 > 初中数学 > 题目详情
22、如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.
求证:(1)AE=BF;(2)AE⊥BF.
分析:(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,当然相等了,由此可以证明△AEO≌△BFO;
(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF.
解答:证明:(1)在△AEO与△BFO中,
∵Rt△OAB与Rt△OEF等腰直角三角形
∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,
∴△AEO≌△BFO(SAS),
∴AE=BF;

(2)延长AE交BF于D,交OB于C,
则∠BCD=∠ACO,
由(1)知:∠OAC=∠OBF,
∴∠BDA=∠AOB=90°,
∴AE⊥BF.
点评:本题考查了全等三角形的判定与性质及等腰三角形的性质;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知在等腰Rt△BCD中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,延长BF交AC于E,H是BC边的中点,连接DH与BE相交于点G
(1)试说明:△FBD≌△ACD;
(2)试说明:△ABC是等腰三角形;
(3)试说明:CE=
12
BF;
(4)求BG:GE的值(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知,等腰Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,连结AE、BF.

求证:(1)AE=BF;(2)AE⊥BF.

 

查看答案和解析>>

科目:初中数学 来源:2012届广东省汕头市潮南区中考模拟考试数学卷(带解析) 题型:解答题

如图,已知,等腰Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,连结AE、BF.

求证:(1)AE=BF;(2)AE⊥BF.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年广东省汕头市潮南区中考模拟考试数学卷(解析版) 题型:解答题

如图,已知,等腰Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,连结AE、BF.

求证:(1)AE=BF;(2)AE⊥BF.

 

查看答案和解析>>

同步练习册答案