精英家教网 > 初中数学 > 题目详情
关于x的二次函数y=-x2+(k2-4)x+2k-2以y轴为对称轴,且与y轴的交点在x轴上方.
(1)求此抛物线的解析式,并在下面建立直角坐标系画出函数的草图;
(2)设A是y轴右侧抛物线上的一个动点,过点A作AB垂直于x轴于点B,再过点A作x轴的平行线交抛物线于点D,过点D作DC垂直于x轴于点C,得到矩形ABCD.设矩形ABCD的周长为l,点A的横坐标为x,试求l关于x的函数关系式;
(3)当点A在y轴右侧的抛物线上运动时,矩形ABCD能否成为正方形?若能,请求出此时正方形的周长;若不能,请说明理由.
【答案】分析:(1)因为二次函数y=-x2+(k2-4)x+2k-2以y轴为对称轴,所以k2-4=0,即可解出k的值,求出抛物线解析式,并利用描点法画出图象;
(2)求出抛物线与x轴的交点坐标,分矩形在x轴上方和矩形在x轴下方两种情况,根据矩形周长公式解答;
(3)假设能构成正方形,根据正方形边长相等,列等式解出x的值,若x>0,则能构成正方形,若x<0,则不能构成正方形.
解答:解:
(1)据题意得:k2-4=0,
∴k=±2.
当k=2时,2k-2=2>0.
当k=-2时,2k-2=-6<0(2分)
又∵抛物线与y轴的交点在x轴上方,
∴k=2.
∴抛物线的解析式为:y=-x2+2.(1分)

(2)解:令-x2+2=0,得x=±
当0<x<时,A1D1=2x,A1B1=-x2+2,
∴l=2(A1B1+A1D1)=-2x2+4x+4(2分)
当x>时,A2D2=2x.
A2B2=-(-x2+2)=x2-2.
∴l=2(A2D2+A2B2)=2x2+4x-4(2分)

(3)当0<x<时,令A1B1=A1D1,得x2+2x-2=0.
解得x=-1-(舍去),或x=-1+
将x=-1+代入l=-2x2+4x+4,
得l=8-8(3分)
当x>时,令A2B2=A2D2得:x2-2x-2=0,
解得x=1-(舍去),或x=1+
代入l=2x2+4x-4,得L=8+8(3分)
综上,矩形ABCD能成为正方形,
且当x=-1时正方形的周长是8-8,
当x=+1时,周长为8+8(1分).
点评:解答此题的关键是求出二次函数的解析式,利用解析式求出各点的坐标表达式,根据矩形或正方形的性质来解答.值得关注,(3)为探索性问题,有一定的开放性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若y关于x的二次函数y=(a-2)x2-(2a-1)x+a的图象与x轴有两个交点,则a的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知关于x 的一元二次方程(m+2)x2-2x-1=0.
(1)若此一元二次方程有实数根,求m的取值范围;
(2)若关于x的二次函数y1=(m+2)x2-2x-1和y2=(m+2)x2+mx+m+1的图象都经过x轴上的点(n,0),求m的值;
(3)在(2)的条件下,将二次函数y1=(m+2)x2-2x-1的图象先沿x轴翻折,再向下平移3个单位,得到一个新的二次函数y3的图象.请你直接写出二次函数y3的解析式,并结合函数的图象回答:当x取何值时,这个新的二次函数y3的值大于二次函数y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•顺义区一模)已知关于x的方程mx2-(3m+2)x+2m+2=0
(1)求证:无论m取任何实数时,方程恒有实数根.
(2)若关于x的二次函数y=mx2-(3m+2)x+2m+2的图象与x轴两个交点的横坐标均为正整数,且m为整数,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•荆门)已知关于x的二次函数y=x2-2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A(x1,y1)、B(x2,y2);(x1<x2
(1)当k=1,m=0,1时,求AB的长;
(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想.
(3)当m=0,无论k为何值时,猜想△AOB的形状.证明你的猜想.
(平面内两点间的距离公式AB=
(x2-x1)2+(y2-y1)2
).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰州)已知:关于x的二次函数y=-x2+ax(a>0),点A(n,y1)、B(n+1,y2)、C(n+2,y3)都在这个二次函数的图象上,其中n为正整数.
(1)y1=y2,请说明a必为奇数;
(2)设a=11,求使y1≤y2≤y3成立的所有n的值;
(3)对于给定的正实数a,是否存在n,使△ABC是以AC为底边的等腰三角形?如果存在,求n的值(用含a的代数式表示);如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案