【题目】如图,长方形ABCD中,点P沿着边按B→C→D→A方向运动,开始以每秒m个单位匀速运动、a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动,在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.
(1)直接写出长方形的长和宽;
(2)求m,a,b的值;
(3)当P点在AD边上时,直接写出S与t的函数解析式.
【答案】(1),;
(2) , ,;
(3)当时,,
当11≤t≤13时,.
【解析】
(1)由图象可知,CD的长度,当t=6时,,求出BC的长;
(2)当时,,从而求得b的值,而得出a和m的值,;
(3)设,根据函数图象是过点(8,16),(11,4),代入即可认得出答案.
(1)∵当时,S的值不变,即点P在CD上,速度为每秒2个单位匀速运动,
∴,
由图像可知P在CD上时,,
即:,
∴ ,
(2)
如图示,当 时,p运动到E点,则有,
根据图像可得:
解得: ,
∴,
∴ ,
并且根据题意有:,
∴ ,
(3)当时,依题意得:
化简得:,
当11≤t≤13时,由(2)得:
化简得:
综上所述: 当时, ,
当11≤t≤13时,
科目:初中数学 来源: 题型:
【题目】我国古代数学的许多发现都曾位居世界前列,如杨辉三角就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数降幂排列)的系数规律例如,在三角形中第一行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3ab+3ab2+b3展开式中的系数.结合对杨辉三角的理解完成以下问题
(1)(a+b)2展开式a2+2ab+b2中每一项的次数都是 次;
(a+b)3展开式a3+3a2b+3ab2+b3中每一项的次数都是 次;
那么(a+b)n展开式中每一项的次数都是 次.
(2)写出(a+1)4的展开式 .
(3)拓展应用:计算(x+1)5+(x﹣1)6+(x+1)7的结果中,x5项的系数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知分式:
(1)化简这个分式
(2)把分式A化简结果的分子与分母同时加上3后得到分式B,问:当a>2时,分式B的值较原来分式A的值是变大了还是变小了?试说明理由。
(3)若A的值是整数,且a也为整数,求出所有符合条件a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:
(1)图象的另一支在第 象限;在每个象限内,y随x的增大而 ;
(2)若此反比例函数的图象经过点(-2,3),求m的值.点A(-5,2)是否在这个函数图象上?点B(-3,4)呢?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.
求证:AD平分∠BAC,填写分析和证明中的空白.
证明:∵AD⊥BC,EF⊥BC(已知)
∴______∥______(______)
∴______=______(两直线平行,内错角相等)
______=______(两直线平行,同位角相等)
∵______(已知),∴______
即AD平分∠BAC(______)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长方体敞口玻璃罐,长、宽、高分别为16 cm、6 cm和6 cm,在罐内点E处有一小块饼干碎末,此时一只蚂蚁正好在罐外壁,在长方形ABCD中心的正上方2 cm处,则蚂蚁到达饼干的最短距离是多少cm.( )
A. 7B.
C. 24D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC是等腰三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:
(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:
①线段PB= ,PC= ;
②猜想:PA2,PB2,PQ2三者之间的数量关系为 ;
(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;
(3)若动点P满足,求的值.(提示:请利用备用图进行探求)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班级在探究“将军饮马问题”时抽象出数学模型:
直线l同旁有两个定点A、B,在直线上存在点P,使得PA+PB的值最小.解法:如图1,作点A关于直线的对称点,连接,则与直线l的交点即为P,且PA+PB的最小值为.
请利用上述模型解决下列问题:
(1)几何应用:如图2,△ABC中,∠C=90°,AC=BC=2,E是AB的中点,P是BC边上的一动点,则PA+PE的最小值为 ;
(2)代数应用:求代数式+ (0≤x≤3)的最小值.
(3)几何拓展:如图3,△ABC中,AC=2,∠A=30°,若在AB、AC上各取一点M、N使BM+MN的值最小,最小值是 ;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料,并解决问题:
如图等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数.为了解决本题,我们可以将绕顶点A旋转到处,此时≌,这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出______;
基本运用
请你利用第题的解答思想方法,解答下面问题:已知如图,中,,,E、F为BC上的点且,求证:;
能力提升
如图,在中,,,,点O为内一点,连接AO,BO,CO,且,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com